Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Eng Online ; 17(1): 97, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016971

RESUMEN

BACKGROUND: An osteon consists of a multi-layered bone matrix and interstitial fluid flow in the lacunar-canalicular system. Loading-induced interstitial fluid flow in the lacunar-canalicular system is critical for osteocyte mechanotransduction and bone remodelling. METHODS: To investigate the effects of the lamellar structure and heterogeneous material properties of the osteon on the distributions of interstitial fluid flow and seepage velocity, an osteon is idealized as a hollow two-dimensional poroelastic multi-layered slab model subjected to cyclic loading. Based on poroelastic theory, the analytical solutions of interstitial fluid pressure and seepage velocity in lacunar-canalicular pores were obtained. RESULTS: The results show that strain magnitude has a greater influence on interstitial fluid pressure than loading frequency. Interestingly, the heterogeneous distribution of permeability produces remarkable variations in interstitial fluid pressure and seepage velocity in the cross-section of cortical bone. In addition, interstitial fluid flow stimuli to osteocytes are mostly controlled by the value of permeability at the surface of the osteon rather than at the inner wall of the osteon. CONCLUSION: Interstitial fluid flow induced by cycling loading stimuli to an osteocyte housed in a lacunar-canalicular pore is not only correlated with strain amplitude and loading frequency, but also closely correlated with the spatial gradient distribution of permeability. This model can help us better understand the fluid flow stimuli to osteocytes during bone remodelling.


Asunto(s)
Elasticidad , Osteón/fisiología , Modelos Biológicos , Osteón/citología , Hidrodinámica , Mecanotransducción Celular , Permeabilidad , Porosidad , Presión , Soporte de Peso
2.
Springerplus ; 5(1): 1490, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27652063

RESUMEN

In this paper, plane thermo-elastic solutions are presented for the problem of a crack in two bonded homogeneous orthotropic media with a graded interfacial zone. The graded interfacial zone is treated as a nonhomogeneous interlayer having spatially varying thermo-elastic moduli between dissimilar, homogeneous orthotropic half-planes, which is assumed to vary exponentially in the direction perpendicular to the crack surface. Using singular integral equation method, the mixed boundary value conditions with respect to the temperature field and those with respect to the stress field are reduced to a system of singular integral equations and solved numerically. Numerical results are obtained to show the influence of non-homogeneity parameters of the material thermo-elastic properties, the orthotropy parameters and the dimensionless thermal resistance on the temperature distribution and the thermal stress intensity factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA