Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 10(10): 1498-1503, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31620240

RESUMEN

General control nonderepressible 2 (GCN2) is a master regulator kinase of amino acid homeostasis and important for cancer survival in the tumor microenvironment under amino acid depletion. We initiated studies aiming at the discovery of novel GCN2 inhibitors as first-in-class antitumor agents and conducted modification of the substructure of sulfonamide derivatives with expected type I half binding on GCN2. Our synthetic strategy mainly corresponding to the αC-helix allosteric pocket of GCN2 led to significant enhancement in potency and a good pharmacokinetic profile in mice. In addition, compound 6d, which showed slow dissociation in binding on GCN2, demonstrated antiproliferative activity in combination with the asparagine-depleting agent asparaginase in an acute lymphoblastic leukemia (ALL) cell line, and it also displayed suppression of GCN2 pathway activation with asparaginase treatment in the ALL cell line and mouse xenograft model.

2.
Nucleic Acids Res ; 42(18): 11601-11, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25217590

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.


Asunto(s)
Adenosina Trifosfatasas/química , ARN Helicasas DEAD-box/química , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Biocatálisis , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Interferón beta/farmacología , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Receptores Inmunológicos
3.
J Virol ; 88(18): 10970-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965468

RESUMEN

Hepatitis C virus (HCV) NS3-4A is required for viral replication and assembly. We establish that virus assembly is sensitive to mutations in the linker region between the helicase and protease domains of NS3-4A. However, we find that the protease cleavage, RNA binding, and unwinding rates of NS3 are minimally affected in vitro. Thus, we conclude that the NS3 linker is critical for mediating protein-protein interactions and dynamic control rather than for modulating the enzymatic functions of NS3-4A.


Asunto(s)
Hepacivirus/enzimología , Hepacivirus/fisiología , Hepatitis C/virología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hepacivirus/química , Hepacivirus/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Proteínas no Estructurales Virales/genética
4.
EMBO Rep ; 14(9): 772-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897087

RESUMEN

Retinoic acid-inducible gene-I (RIG-I) is an intracellular RNA sensor that activates the innate immune machinery in response to infection by RNA viruses. Here, we report the crystal structure of distinct conformations of a RIG-I:dsRNA complex, which shows that HEL2i-mediated scanning allows RIG-I to sense the length of RNA targets. To understand the implications of HEL2i scanning for catalytic activity and signalling by RIG-I, we examined its ATPase activity when stimulated by duplex RNAs of varying lengths and 5' composition. We identified a minimal RNA duplex that binds one RIG-I molecule, stimulates robust ATPase activity, and elicits a RIG-I-mediated interferon response in cells. Our results reveal that the minimal functional unit of the RIG-I:RNA complex is a monomer that binds at the terminus of a duplex RNA substrate. This behaviour is markedly different from the RIG-I paralog melanoma differentiation-associated gene 5 (MDA5), which forms cooperative filaments.


Asunto(s)
Simulación del Acoplamiento Molecular , ARN Helicasas/química , ARN/metabolismo , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , ARN Helicasas/metabolismo
5.
mBio ; 4(3): e00385-13, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23781071

RESUMEN

The type I interferon (IFN) signaling pathway restricts infection of many divergent families of RNA and DNA viruses by inducing hundreds of IFN-stimulated genes (ISGs), some of which have direct antiviral activity. We screened 813 short hairpin RNA (shRNA) constructs targeting 245 human ISGs using a flow cytometry approach to identify genes that modulated infection of West Nile virus (WNV) in IFN-ß-treated human cells. Thirty ISGs with inhibitory effects against WNV were identified, including several novel genes that had antiviral activity against related and unrelated positive-strand RNA viruses. We also defined one ISG, activating signal cointegrator complex 3 (ASCC3), which functioned as a negative regulator of the host defense response. Silencing of ASCC3 resulted in upregulation of multiple antiviral ISGs, which correlated with inhibition of infection of several positive-strand RNA viruses. Reciprocally, ectopic expression of human ASCC3 or mouse Ascc3 resulted in downregulation of ISGs and increased viral infection. Mechanism-of-action and RNA sequencing studies revealed that ASCC3 functions to modulate ISG expression in an IRF-3- and IRF-7-dependent manner. Compared to prior ectopic ISG expression studies, our shRNA screen identified novel ISGs that restrict infection of WNV and other viruses and defined a new counterregulatory ISG, ASCC3, which tempers cell-intrinsic immunity.


Asunto(s)
ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Interferones/inmunología , Virus del Nilo Occidental/inmunología , Animales , Línea Celular , ADN Helicasas/genética , ADN Helicasas/inmunología , Pruebas Genéticas/métodos , Humanos , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
6.
J Biol Chem ; 287(51): 42564-73, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23055530

RESUMEN

RIG-I is a cytoplasmic surveillance protein that contributes to the earliest stages of the vertebrate innate immune response. The protein specifically recognizes 5'-triphosphorylated RNA structures that are released into the cell by viruses, such as influenza and hepatitis C. To understand the energetic basis for viral RNA recognition by RIG-I, we studied the binding of RIG-I domain variants to a family of dsRNA ligands. Thermodynamic analysis revealed that the isolated RIG-I domains each make important contributions to affinity and that they interact using different strategies. Covalent linkage between the domains enhances RNA ligand specificity while reducing overall binding affinity, thereby providing a mechanism for discriminating virus from host RNA.


Asunto(s)
Inmunidad Innata , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Cinética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica , Ubiquitina-Proteína Ligasas/química
7.
Methods Enzymol ; 511: 131-47, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22713318

RESUMEN

Historically, research on RNA helicase and translocation enzymes has seemed like a footnote to the extraordinary progress in studies on DNA-remodeling enzymes. However, during the past decade, the rising wave of activity in RNA science has engendered intense interest in the behaviors of specialized motor enzymes that remodel RNA molecules. Functional, mechanistic, and structural investigations of these RNA enzymes have begun to reveal the molecular basis for their key roles in RNA metabolism and signaling. In this chapter, we highlight the structural and mechanistic similarities among monomeric RNA translocase enzymes, while emphasizing the many divergent characteristics that have caused this enzyme family to become one of the most important in metabolism and gene expression.


Asunto(s)
ARN Helicasas/química , ARN Helicasas/metabolismo , Animales , Humanos , Estructura Secundaria de Proteína , ARN/química , ARN/metabolismo
8.
Cell ; 147(2): 409-22, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000018

RESUMEN

Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved "helicase" domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Bicatenario/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Proteína 58 DEAD Box , Humanos , Hidrólisis , Modelos Moleculares , Estructura Terciaria de Proteína , ARN Bicatenario/metabolismo , Receptores Inmunológicos , Alineación de Secuencia , Transducción de Señal
9.
J Virol ; 85(9): 4343-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325413

RESUMEN

The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific ß-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the ß-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.


Asunto(s)
Hepacivirus/química , Hepacivirus/enzimología , ARN Helicasas/química , ARN Helicasas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Hepacivirus/genética , Cinética , Unión Proteica , Conformación Proteica , ARN/metabolismo , ARN Helicasas/genética , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA