Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 267: 115305, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32841905

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been demonstrated to be transferred from parental animals to their offspring. However, whether parental exposure to environmental concentrations of TDCIPP show neurodevelopmental toxicity in the F1 generation and the possible underlying mechanism remain unclear. Therefore, in this study, zebrafish embryos were exposed to environmental concentrations of TDCIPP (3, 30 and 300 ng L-1) for 120 days. The effects of exposure on motor behaviors, neurotransmitter levels, DNA methylation, and gene expression of F1 larvae were investigated. Parental exposure left TDCIPP residues in F1 eggs as well as reduced body length of F1 larvae. Moreover, parental exposure significantly reduced swimming activity in F1 5 dpf larvae, although it did not significantly alter serotonin, dopamine, 3,4-dihydroxyphenylacetic acid, γ-aminobutyrate, and acetylcholine levels. Genes encoding DNA methylation transferases (dnmt3aa and dnmt1) were downregulated in F1 larvae. Reduced representation bisulfite sequencing analysis revealed 446 differentially methylated regions and enriched neuronal cell body Gene Ontology term in F1 generation. Correlation analysis between the expression of genes related to neural cell body and swimming speed indicated that solute carrier family 1 member 2b (slc1a2b) downregulation might be responsible for the inhibition of motor behaviors. Furthermore, bisulfite amplicon sequencing analysis confirmed hypermethylation of the promoter region of slc1a2b in F1 larvae following parental exposure to 300 ng L-1 TDCIPP, which might have led to significant downregulation of gene expression and, in turn, influenced the motor behaviors. These results indicate that parental exposure to environmental concentrations of TDCIPP alters DNA methylation, downregulates gene expressions and, thus inducing developmental neurotoxicity, in F1 larvae.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Metilación de ADN , Larva , Compuestos Organofosforados , Fosfatos , Contaminantes Químicos del Agua/toxicidad
2.
Chemosphere ; 220: 216-226, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30583213

RESUMEN

Pentachlorophenol (PCP) and its byproduct hexachlorobenze (HCB) are two co-existing persistent environmental chemicals, but their combined toxicity remains unclear. In this study, adult zebrafish were exposed to 5 (low dose) and 25 µg·L-1 (high dose) of PCP, HCB or their combination for 21 days, and the impact on endocrine and reproduction was investigated. Results showed that combined exposure to 25 µg·L-1 PCP and 25 µg·â€¯L-1 HCB significantly increased the plasma estradiol (E2) and testosterone (T) levels, altered the expressions of genes along the hypothalamic-pituitary-gonadal-liver (HPGL) axis, inhibited gonadal development, and eventually lead to decreased egg production of F0 zebrafish as well as inhibited development of F1 eggs/larvae. Compared to the combined exposure of high doses, significantly lower levels of plasma E2 and T were observed for either the high PCP or high HCB alone exposure, indicating a synergistic effect of the two chemicals on endocrine disruption after combination. Furthermore, the high PCP alone exposure inhibited the gonadal development in both the males and females, while the HCB alone exposure did not. Comparison of exposure effects indicated a greater decrease of mature gametes levels and egg production in the high combined group when compared to the high HCB alone group, but no significant difference was observed between the high combined group and the high PCP alone group. Taken together, the results suggested that combined exposure to PCP and HCB may synergistically affect endocrine of zebrafish, and result in reproduction impairments, with PCP being the primary contributor.


Asunto(s)
Sistema Endocrino/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Fungicidas Industriales/toxicidad , Hexaclorobenceno/toxicidad , Pentaclorofenol/toxicidad , Reproducción/efectos de los fármacos , Pez Cebra/fisiología , Animales , Gónadas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...