Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740744

RESUMEN

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Asunto(s)
Factores de Transcripción Forkhead , Neoplasias Ováricas , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Línea Celular Tumoral , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Desnudos , Proliferación Celular
2.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689964

RESUMEN

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

3.
Front Nutr ; 11: 1340453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559780

RESUMEN

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is presently the most prevalent chronic liver disorder globally that is closely linked to obesity, dyslipidemia metabolic syndrome, and type 2 diabetes mellitus (T2DM). Its pathogenesis is strongly associated with inflammation, and diet is a major factor in reducing inflammation. However, current research has focused primarily on exploring the relationship between diet and NAFLD, with less research on its link to MAFLD. Methods: In this research, using dietary inflammatory index (DII) as a measure to assess dietary quality, we analyzed the relationship between diet and MAFLD. Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018, including 3,633 adults with complete DII and MAFLD, were used to develop cross-sectional analyses. Logistic regression analysis was adapted for investigating the relationship between DII and MAFLD development. Additionally, subgroup analysis and threshold effect analysis were carried out. Results: A positive link between DII and MAFLD was found in the fully adjusted model (OR = 1.05; 95%CI, 1.00-1.11, p < 0.05). Subgroup analysis indicated that there was no significant dependence for the connection between DII and MAFLD except for the subgroup stratified by age. Compared with other age groups, people with MAFLD had 20% higher DII scores than non-MAFLD participants in those aged 20-41 years old (OR = 1.20; 95%CI, 1.08-1.33, p < 0.001). Furthermore, we found a U-shaped curve with an inflection point of 3.06 illustrating the non-linear connection between DII and MAFLD. Conclusion: As a result, our research indicates that pro-inflammatory diet may increase the chance of MAFLD development, thus improved dietary patterns as a lifestyle intervention is an important strategy to decrease the incidence of MAFLD.

4.
Diabetes Metab Syndr Obes ; 17: 1635-1649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616988

RESUMEN

Objective: Diabetic retinopathy (DR) can cause permanent blindness with unstated pathogenesis. We aim to find novel biomarkers and explore the mechanism of apoptotic protease activating factor 1 (APAF1) in DR. Methods: Differential expression genes (DEGs) were screened based on GSE60436 dataset to find hub genes involved in pyroptosis after comprehensive bioinformatics analysis. DR mice model was constructed by streptozotocin injection. The pathological structure of retina was observed using hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was applied to assess inflammatory factors, vascular endothelial growth factor (VEGF), and oxidative stress. The mRNA and protein expression levels were detected using quantitative real-time polymerase-chain reaction and Western blot. Cell counting kit and flow cytometry were employed to detect proliferation and apoptosis in high glucose-induced ARPE-19 cells. Results: Total 71 pyroptosis-related DEGs were screened. BIRC2, CXCL8, APAF1, PPARG, TP53, and CYCS were identified as hub genes of DR. APAF1 was selected as a potential regulator of DR, which was up-regulated in DR mice. APAF1 silencing alleviated retinopathy and inhibited pyroptosis in DR mice with decreased levels of inflammatory factors, VEGF, and oxidative stress. Moreover, APAF1 silencing promoted proliferation while inhibiting apoptosis and caspase-3/GSDME-dependent pyroptosis with a decrease in TNF-α, IL-1ß, IL-18, and lactate dehydrogenase in high glucose-induced ARPE-19 cells. Additionally, caspase-3 activator reversed the promotion effect on proliferation and inhibitory effect on apoptosis and pyroptosis after APAF1 silencing in high glucose-induced ARPE-19 cells. Conclusion: APAF1 is a novel biomarker for DR and APAF1 silencing inhibits the development of DR by suppressing caspase-3/GSDME-dependent pyroptosis.

5.
Environ Sci Technol ; 58(16): 7066-7077, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597811

RESUMEN

Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 µmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.


Asunto(s)
Carbono , Especies Reactivas de Oxígeno , Estaciones del Año , Suelo , Suelo/química , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo
6.
Cell Signal ; 119: 111189, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670475

RESUMEN

In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-­phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.


Asunto(s)
Arginina , Calcificación Vascular , Arginina/metabolismo , Humanos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Metilación , Animales , Transducción de Señal , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Estrés Oxidativo
7.
Mol Cell Endocrinol ; 589: 112253, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670220

RESUMEN

Ovarian cancer stands as a formidable clinical challenge, with limited therapeutic options. This investigation delves into the intricate molecular mechanisms governing ovarian cancer progression and uncovers Centromere Protein K (CENPK) as a central figure in disease pathogenesis. Elevated CENPK levels within ovarian cancer tissues conspicuously align with adverse clinical outcomes, positioning CENPK as a promising prognostic biomarker. Deeper exploration reveals a direct transcriptional connection between CENPK and the E2F1 transcription factor and clearly establishes E2F1's role as the master regulator of CENPK expression in ovarian cancer. Our inquiry revealing a suppression of tumor-promoting signaling pathways, most notably the mTOR pathway, upon CENPK silencing. Intriguingly, CENPK renders ovarian cancer cells more responsive to the mTOR inhibitor rapamycin, introducing a promising avenue for therapeutic intervention. In summation, our study unravels the multifaceted role of CENPK in ovarian cancer progression. It emerges as a prognostic indicator, a pivotal mediator of cell proliferation and tumorigenicity, and a regulator of the mTOR pathway, shedding light on potential therapeutic avenues for this formidable disease.

8.
Cell Signal ; 119: 111180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642782

RESUMEN

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN , Proteína 1 de la Respuesta de Crecimiento Precoz , Regulación Neoplásica de la Expresión Génica , Inflamación , Neoplasias Ováricas , Transactivadores , Activación Transcripcional , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Línea Celular Tumoral , Transactivadores/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Animales , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones Desnudos , Transducción de Señal , Ratones
9.
Int J Biol Macromol ; 265(Pt 1): 130709, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462120

RESUMEN

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Sulfatos de Condroitina , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química , Porfirinas/farmacología , Porfirinas/química , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
10.
Neural Regen Res ; 19(11): 2488-2498, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526285

RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00029/figure1/v/2024-03-08T184507Z/r/image-tiff Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE-/- mice. However, little is known about the role of lnc_000048 in classically activated macrophage (M1) polarization. In this study, we established THP-1-derived testing state macrophages (M0), M1 macrophages, and alternately activated macrophages (M2). Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages. Flow cytometry was used to detect phenotypic proteins (CD11b, CD38, CD80). We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048. Flow cytometry, western blot, and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response, while over-expression of lnc_000048 led to the opposite effect. Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization. Moreover, catRAPID prediction, RNA-pull down, and mass spectrometry were used to identify and screen the protein kinase RNA-activated (PKR), then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR. Immunofluorescence (IF)-RNA fluorescence in situ hybridization (FISH) double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage. We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation, leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression. Taken together, these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.

11.
CNS Neurosci Ther ; 30(2): e14536, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38375982

RESUMEN

BACKGROUND: Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM: Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION: We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.


Asunto(s)
Adenosina Trifosfato , Depresión , Humanos , Adenosina Trifosfato/metabolismo , Depresión/tratamiento farmacológico , Astrocitos/metabolismo
12.
World J Gastrointest Surg ; 16(1): 85-94, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328326

RESUMEN

BACKGROUND: Gastric cancer is one of the most common malignant tumors in the digestive system, ranking sixth in incidence and fourth in mortality worldwide. Since 42.5% of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type, the application of imaging diagnosis is restricted. AIM: To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning (ML) algorithms and to evaluate their predictive performance in clinical practice. METHODS: Data of a total of 369 patients who underwent radical gastrectomy at the Department of General Surgery of Affiliated Hospital of Xuzhou Medical University (Xuzhou, China) from March 2016 to November 2019 were collected and retrospectively analyzed as the training group. In addition, data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People's Hospital (Jining, China) were collected and analyzed as the verification group. Seven ML models, including decision tree, random forest, support vector machine (SVM), gradient boosting machine, naive Bayes, neural network, and logistic regression, were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer. The ML models were established following ten cross-validation iterations using the training dataset, and subsequently, each model was assessed using the test dataset. The models' performance was evaluated by comparing the area under the receiver operating characteristic curve of each model. RESULTS: Among the seven ML models, except for SVM, the other ones exhibited higher accuracy and reliability, and the influences of various risk factors on the models are intuitive. CONCLUSION: The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer, which can aid in personalized clinical diagnosis and treatment.

13.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395938

RESUMEN

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Asunto(s)
Dipterocarpaceae , Genómica , Bosque Lluvioso , Genoma , Filogenia
14.
Nat Commun ; 15(1): 1282, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346956

RESUMEN

TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.


Asunto(s)
Colitis , Receptores Tipo I de Factores de Necrosis Tumoral , Humanos , Ratones , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Intestinos/patología , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Apoptosis , Colitis/patología , Inflamación/patología , Factores Despolimerizantes de la Actina/metabolismo , Proteínas de Unión al Calcio/metabolismo
15.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212299

RESUMEN

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias del Colon/genética , Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Carbohydr Polym ; 328: 121706, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220341

RESUMEN

The quality of polysaccharide-based films and hard capsules is often affected by changes in relative humidity, manifesting as unstable water content, and changes in mechanical strength that make them brittle or soft. Herein, carboxyl-modified nanocellulose (cNC) was prepared and used as a new component to successfully improve the moisture resistance of cNC/pullulan/high-acyl gellan bio-nanocomposite hard capsules (NCPGs). Homogenously dispersed cNC in the pullulan/high-acyl gellan matrix could render the formation of more hydrogen bonds that provided additional water-binding sites and limited the free movement of pullulan and high-acyl gellan molecular chains within NCPGs. This contributed to a decreased amount of pooling adsorption water and an increased amount of Langmuir adsorption water in NCPGs, as compared to pullulan/high-acyl gellan hard capsules (PGs) without cNC. Therefore, the equilibrium moisture content (EMC) values of NCPGs decreased at 83 % relative humidity and increased at 23 % relative humidity compared to those of PGs. Together with enhanced mechanical and barrier properties, NCPGs effectively protected encapsulated amoxicillin and probiotic powder from changes in the outside humidity. Additionally, NCPGs exhibited faster drug release. This study presents a new mechanism and strategy for fabricating films and hard capsules with enhanced stability against moisture variation.


Asunto(s)
Glucanos , Nanocompuestos , Glucanos/química , Agua/química , Amoxicilina , Nanocompuestos/química
17.
Glob Chang Biol ; 30(1): e17115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273576

RESUMEN

Crop residue-derived carbon (C) emissions and priming effects (PE) in cropland soils can influence the global C cycle. However, their corresponding generality, driving factors, and responses to nitrogen (N) inputs are poorly understood. As a result, the total C emissions and net C balance also remain mysterious. To address the above knowledge gaps, a meta-analysis of 1123 observations, taken from 51 studies world-wide, has been completed. The results showed that within 360 days, emission ratios of crop residues C (ER) ranged from 0.22% to 61.80%, and crop residues generally induced positive PE (+71.76%). Comparatively, the contribution of crop residue-derived C emissions (52.82%) to total C emissions was generally higher than that of PE (12.08%), emphasizing the importance of reducing ER. The ER and PE differed among crop types, and both were low in the case of rice, which was attributed to its saturated water conditions. The ER and PE also varied with soil properties, as PE decreased with increasing C addition ratio in soils where soil organic carbon (SOC) was less than 10‰; in contrast, the opposite phenomenon was observed in soils with SOC exceeding 10‰. Moreover, N inputs increased ER and PE by 8.31% and 3.78%, respectively, which was predominantly attributed to (NH4 )2 SO4 . The increased PE was verified to be dominated by microbial stoichiometric decomposition. In summary, after incorporating crop residues, the total C emissions and relative net C balance in the cropland soils ranged from 0.03 to 23.47 mg C g-1 soil and 0.21 to 0.97 mg C g-1 residue-C g-1 soil, respectively, suggesting a significant impact on C cycle. These results clarify the value of incorporating crop residues into croplands to regulate global SOC dynamics and help to establish while managing site-specific crop return systems that facilitate C sequestration.


Asunto(s)
Oryza , Suelo , Suelo/química , Carbono , Nitrógeno/análisis , Agricultura/métodos
18.
Mol Cell Endocrinol ; 582: 112127, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109990

RESUMEN

The precise involvement and mechanistic role of the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) in ovarian cancer (OV) remain poorly understood. Here, leveraging comprehensive data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we unveil the selective overexpression of SCUBE3 in ovarian cancer tissues and cells. Intriguingly, elevated SCUBE3 expression levels correlate with an unfavorable prognosis in patients. Through meticulous manipulation of SCUBE3 expression, we elucidate its consequential impact on in vitro proliferation and invasion of ovarian cancer cells, as well as in vivo tumor growth in mice. Our multifaceted investigations, encompassing luciferase reporter assays, chromatin immunoprecipitation (ChIP) experiments, and mining of public databases, successfully identify SCUBE3 as a direct downstream target gene of TCF4-a pivotal positive regulator within the ß-catenin/TCF4 complex. Furthermore, utilizing a recessive mutant mouse line (kta41) harboring a functionally impaired point mutation at position 882 in the SCUBE3 gene, we uncover SCUBE3's involvement in the intricate regulation of angiogenesis and epithelial-mesenchymal transition (EMT). Strikingly, Spearman correlation coefficient analysis unveils a close association between SCUBE3 and HIF1A in OV, with SCUBE3 exerting tight control over HIF1A mRNA expression. Moreover, functional inhibition of HIF1A significantly impedes the pro-proliferative and invasive capabilities of SCUBE3-overexpressing ovarian cancer cells. Collectively, our findings underscore the pivotal role of SCUBE3 in driving ovarian cancer progression, shedding light on its intricate molecular mechanisms and establishing it as a potential therapeutic target for this devastating disease.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Humanos , Femenino , Ratones , Animales , beta Catenina/metabolismo , Regulación hacia Arriba/genética , Neoplasias Ováricas/genética , Transducción de Señal , Transición Epitelial-Mesenquimal/genética , Vía de Señalización Wnt , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
19.
BMC Geriatr ; 23(1): 719, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932677

RESUMEN

BACKGROUND: Postoperative delirium (POD) is an important complication for older patients and recent randomised controlled trials have showed a conflicting result of the effect of deep and light anesthesia. METHODS: We included randomised controlled trials including older adults that evaluated the effect of anesthetic depth on postoperative delirium from PubMed, Embase, Web of Science and Cochrane Library. We considered deep anesthesia as observer's assessment of the alertness/ sedation scale (OAA/S) of 0-2 or targeted bispectral (BIS) < 45 and the light anesthesia was considered OAA/S 3-5 or targeted BIS > 50. The primary outcome was incidence of POD within 7 days after surgery. And the secondary outcomes were mortality and cognitive function 3 months or more after surgery. The quality of evidence was assessed via the grading of recommendations assessment, development, and evaluation approach. RESULTS: We included 6 studies represented 7736 patients aged 60 years and older. We observed that the deep anesthesia would not increase incidence of POD when compared with the light anesthesia when 4 related studies were pooled (OR, 1.40; 95% CI, 0.63-3.08, P = 0.41, I2 = 82%, low certainty). And no significant was found in mortality (OR, 1.12; 95% CI, 0.93-1.35, P = 0.23, I2 = 0%, high certainty) and cognitive function (OR, 1.13; 95% CI, 0.67-1.91, P = 0.64, I2 = 13%, high certainty) 3 months or more after surgery between deep anesthesia and light anesthesia. CONCLUSIONS: Low-quality evidence suggests that light general anesthesia was not associated with lower POD incidence than deep general anesthesia. And High-quality evidence showed that anesthetic depth did not affect the long-term mortality and cognitive function. SYSTEMATIC REVIEW REGISTRATION: CRD42022300829 (PROSPERO).


Asunto(s)
Anestésicos , Delirio , Delirio del Despertar , Humanos , Persona de Mediana Edad , Anciano , Delirio/epidemiología , Anestesia General/efectos adversos , Cognición , Complicaciones Posoperatorias/etiología
20.
Front Genet ; 14: 1187415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693312

RESUMEN

Introduction: Dexmedetomidine (DXM) is widely used as an adjuvant to anesthesia or a sedative medicine, and differences in individual sensitivity to the drug exist. This study aimed to investigate the effect of genetic polymorphisms on these differences. Methods: A total of 112 patients undergoing hand surgery were recruited. DXM 0.5 µg/kg was administered within 10 min and then continuously injected (0.4 µg/kg/h). Narcotrend index, effective dose and onset time of sedation, MAP, and HR were measured. Forty-five single nucleotide polymorphisms (SNPs) were selected for genotype. Results: We observed individual differences in the sedation and hemodynamics induced by DXM. ABCG2 rs2231142, CYP2D6 rs16947, WBP2NL rs5758550, KATP rs141294036, KCNMB1 rs11739136, KCNMA1 rs16934182, ABCC9 rs11046209, ADRA2A rs1800544, and ADRB2 rs1042713 were shown to cause statistically significant (p < 0.05) influence on the individual variation of DXM on sedation and hemodynamics. Moreover, the multiple linear regression analysis indicated sex, BMI, and ADRA2A rs1800544 are statistically related to the effective dose of DXM sedation. Discussion: The evidence suggests that the nine SNPs involved in transport proteins, metabolic enzymes, and target proteins of DXM could explain the individual variability in the sedative and hemodynamic effects of DXM. Therefore, with SNP genotyping, these results could guide personalized medication and promote clinical and surgical management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...