Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Reprod Biol Endocrinol ; 22(1): 78, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987797

RESUMEN

OBJECTIVE: To explore the optimal models for predicting the formation of high-quality embryos in Poor Ovarian Response (POR) Patients with Progestin-Primed Ovarian Stimulation (PPOS) using machine learning algorithms. METHODS: A retrospective analysis was conducted on the clinical data of 4,216 POR cycles who underwent in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) at Sichuan Jinxin Xinan Women and Children's Hospital from January 2015 to December 2021. Based on the presence of high-quality cleavage embryos 72 h post-fertilization, the samples were divided into the high-quality cleavage embryo group (N = 1950) and the non-high-quality cleavage embryo group (N = 2266). Additionally, based on whether high-quality blastocysts were observed following full blastocyst culture, the samples were categorized into the high-quality blastocyst group (N = 124) and the non-high-quality blastocyst group (N = 1800). The factors influencing the formation of high-quality embryos were analyzed using logistic regression. The predictive models based on machine learning methods were constructed and evaluated accordingly. RESULTS: Differential analysis revealed that there are statistically significant differences in 14 factors between high-quality and non-high-quality cleavage embryos. Logistic regression analysis identified 14 factors as influential in forming high-quality cleavage embryos. In models excluding three variables (retrieved oocytes, MII oocytes, and 2PN fertilized oocytes), the XGBoost model performed slightly better (AUC = 0.672, 95% CI = 0.636-0.708). Conversely, in models including these three variables, the Random Forest model exhibited the best performance (AUC = 0.788, 95% CI = 0.759-0.818). In the analysis of high-quality blastocysts, significant differences were found in 17 factors. Logistic regression analysis indicated that 13 factors influence the formation of high-quality blastocysts. Including these variables in the predictive model, the XGBoost model showed the highest performance (AUC = 0.813, 95% CI = 0.741-0.884). CONCLUSION: We developed a predictive model for the formation of high-quality embryos using machine learning methods for patients with POR undergoing treatment with the PPOS protocol. This model can help infertility patients better understand the likelihood of forming high-quality embryos following treatment and help clinicians better understand and predict treatment outcomes, thus facilitating more targeted and effective interventions.


Asunto(s)
Aprendizaje Automático , Inducción de la Ovulación , Progestinas , Humanos , Femenino , Inducción de la Ovulación/métodos , Estudios Retrospectivos , Adulto , Embarazo , Progestinas/farmacología , Fertilización In Vitro/métodos , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Inyecciones de Esperma Intracitoplasmáticas/métodos , Blastocisto/efectos de los fármacos , Blastocisto/fisiología , Transferencia de Embrión/métodos , Índice de Embarazo
2.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877842

RESUMEN

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Preeclampsia , Trofoblastos , Trofoblastos/metabolismo , Femenino , Preeclampsia/genética , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Fusión Celular , Placenta/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119768, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838858

RESUMEN

The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated ß-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.

4.
J Ovarian Res ; 17(1): 105, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760835

RESUMEN

BACKGROUND: In the realm of assisted reproduction, a subset of infertile patients demonstrates high ovarian response following controlled ovarian stimulation (COS), with approximately 29.7% facing the risk of Ovarian Hyperstimulation Syndrome (OHSS). Management of OHSS risk often necessitates embryo transfer cancellation, leading to delayed prospects of successful pregnancy and significant psychological distress. Regrettably, these patients have received limited research attention, particularly regarding their metabolic profile. In this study, we aim to utilize gas chromatography-mass spectrometry (GC-MS) to reveal these patients' unique serum metabolic profiles and provide insights into the disease's pathogenesis. METHODS: We categorized 145 infertile women into two main groups: the CON infertility group from tubal infertility patients and the Polycystic Ovary Syndrome (PCOS) infertility group. Within these groups, we further subdivided them into four categories: patients with normal ovarian response (CON-NOR group), patients with high ovarian response and at risk for OHSS (CON-HOR group) within the CON group, as well as patients with normal ovarian response (PCOS-NOR group) and patients with high ovarian response and at risk for OHSS (PCOS-HOR group) within the PCOS group. Serum metabolic profiles were analyzed using GC-MS. The risk criteria for OHSS were: the number of developing follicles > 20, peak Estradiol (E2) > 4000pg/mL, and Anti-Müllerian Hormone (AMH) levels > 4.5ng/mL. RESULTS: The serum metabolomics analysis revealed four different metabolites within the CON group and 14 within the PCOS group. Remarkably, 10-pentadecenoic acid emerged as a discernible risk metabolite for the CON-HOR, also found to be a differential metabolite between CON-NOR and PCOS groups. cysteine and 5-methoxytryptamine were also identified as risk metabolites for the PCOS-HOR. Furthermore, KEGG analysis unveiled significant enrichment of the aminoacyl-tRNA biosynthesis pathway among the metabolites differing between PCOS-NOR and PCOS-HOR. CONCLUSION: Our study highlights significant metabolite differences between patients with normal ovarian response and those with high ovarian response and at risk for OHSS within both the tubal infertility control group and PCOS infertility group. Importantly, we observe metabolic similarities between patients with PCOS and those with a high ovarian response but without PCOS, suggesting potential parallels in their underlying causes.


Asunto(s)
Fertilización In Vitro , Infertilidad Femenina , Inducción de la Ovulación , Humanos , Femenino , Infertilidad Femenina/metabolismo , Infertilidad Femenina/sangre , Adulto , Síndrome de Hiperestimulación Ovárica/sangre , Síndrome de Hiperestimulación Ovárica/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/complicaciones , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Embarazo , Ovario/metabolismo
5.
Front Nutr ; 11: 1364841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765814

RESUMEN

Background: Nephritis is a pivotal catalyst in chronic kidney disease (CKD) progression. Although epidemiological studies have explored the impact of plasma circulating metabolites and drugs on nephritis, few have harnessed genetic methodologies to establish causal relationships. Methods: Through Mendelian randomization (MR) in two substantial cohorts, spanning large sample sizes, we evaluated over 100 plasma circulating metabolites and 263 drugs to discern their causal effects on nephritis risk. The primary analytical tool was the inverse variance weighted (IVW) analysis. Our bioinformatic scrutiny of GSE115857 (IgA nephropathy, 86 samples) and GSE72326 (lupus nephritis, 238 samples) unveiled anomalies in lipid metabolism and immunological characteristics in nephritis. Thorough sensitivity analyses (MR-Egger, MR-PRESSO, leave-one-out analysis) were undertaken to verify the instrumental variables' (IVs) assumptions. Results: Unique lipoprotein-related molecules established causal links with diverse nephritis subtypes. Notably, docosahexaenoic acid (DHA) emerged as a protective factor for acute tubulointerstitial nephritis (ATIN) (OR1 = 0.84, [95% CI 0.78-0.90], p1 = 0.013; OR2 = 0.89, [95% CI 0.82-0.97], p2 = 0.007). Conversely, multivitamin supplementation minus minerals notably increased the risk of ATIN (OR = 31.25, [95% CI 9.23-105.85], p = 0.004). Reduced α-linolenic acid (ALA) levels due to lipid-lowering drugs were linked to both ATIN (OR = 4.88, [95% CI 3.52-6.77], p < 0.001) and tubulointerstitial nephritis (TIN) (OR = 7.52, [95% CI 2.78-20.30], p = 0.042). While the non-renal drug indivina showed promise for TIN treatment, the use of digoxin, hydroxocobalamin, and liothyronine elevated the risk of chronic tubulointerstitial nephritis (CTIN). Transcriptome analysis affirmed that anomalous lipid metabolism and immune infiltration are characteristic of IgA nephropathy and lupus nephritis. The robustness of these causal links was reinforced by sensitivity analyses and leave-one-out tests, indicating no signs of pleiotropy. Conclusion: Dyslipidemia significantly contributes to nephritis development. Strategies aimed at reducing plasma low-density lipoprotein levels or ALA supplementation may enhance the efficacy of existing lipid-lowering drug regimens for nephritis treatment. Renal functional status should also be judiciously considered with regard to the use of nonrenal medications.

6.
Hum Reprod ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725195

RESUMEN

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

7.
Biol Reprod ; 111(2): 414-426, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647664

RESUMEN

OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.


Asunto(s)
Autofagia , Proteína HMGB1 , Sistema de Señalización de MAP Quinasas , Placenta , Trofoblastos , Animales , Femenino , Humanos , Ratones , Embarazo , Autofagia/fisiología , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Noqueados , Placenta/metabolismo , Placentación/fisiología , Trofoblastos/metabolismo , Trofoblastos/fisiología , Masculino
8.
Medicine (Baltimore) ; 103(13): e37542, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552082

RESUMEN

In this retrospective study conducted at Sichuan Jinxin Xinan Women and Children's Hospital spanning January 2015 to December 2021, our objective was to investigate the impact of embryo cryopreservation duration on outcomes in frozen embryo transfer. Participants, totaling 47,006 cycles, were classified into 3 groups based on cryopreservation duration: ≤1 year (Group 1), 1 to 6 years (Group 2), and ≥6 years (Group 3). Employing various statistical analyses, including 1-way ANOVA, Kruskal-Wallis test, chi-square test, and a generalized estimating equation model, we rigorously adjusted for confounding factors. Primary outcomes encompassed clinical pregnancy rate and Live Birth Rate (LBR), while secondary outcomes included biochemical pregnancy rate, multiple pregnancy rate, ectopic pregnancy rate, early and late miscarriage rates, preterm birth rate, neonatal birth weight, weeks at birth, and newborn sex. Patient distribution across cryopreservation duration groups was as follows: Group 1 (40,461 cycles), Group 2 (6337 cycles), and Group 3 (208 cycles). Postcontrolling for confounding factors, Group 1 exhibited a decreased likelihood of achieving biochemical pregnancy rate, clinical pregnancy rate, and LBR (OR < 1, aOR < 1, P < .05). Furthermore, an elevated incidence of ectopic pregnancy was observed (OR > 1, aOR > 1), notably significant after 6 years of freezing time [aOR = 4.141, 95% confidence intervals (1.013-16.921), P = .05]. Cryopreservation exceeding 1 year was associated with an increased risk of early miscarriage and preterm birth (OR > 1, aOR > 1). No statistically significant differences were observed in birth weight or sex between groups. However, male infant birth rates were consistently higher than those of female infants across all groups. In conclusion, favorable pregnancy outcomes align with embryo cryopreservation durations within 1 year, while freezing for more than 1 year may diminish clinical pregnancy and LBRs, concurrently elevating the risk of ectopic pregnancy and preterm birth.


Asunto(s)
Aborto Espontáneo , Embarazo Ectópico , Nacimiento Prematuro , Niño , Embarazo , Femenino , Masculino , Recién Nacido , Humanos , Resultado del Embarazo/epidemiología , Estudios Retrospectivos , Aborto Espontáneo/epidemiología , Aborto Espontáneo/etiología , Peso al Nacer , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , Nacimiento Vivo , Transferencia de Embrión/efectos adversos , Índice de Embarazo , Criopreservación , Embarazo Ectópico/epidemiología , Embarazo Ectópico/etiología
9.
Int J Biol Macromol ; 263(Pt 1): 130220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368983

RESUMEN

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.


Asunto(s)
Placenta , Placentación , Humanos , Embarazo , Femenino , Placenta/metabolismo , Placentación/genética , Primer Trimestre del Embarazo , Trofoblastos/metabolismo , ARN Nuclear Pequeño/metabolismo , Movimiento Celular , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
10.
Food Chem X ; 21: 101216, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38384689

RESUMEN

Kamut® wheat (Triticum turgidum ssp. turanicum), an ancient, underutilized cereal, offers potential health benefits due to its phenolic compounds. This study aimed to investigate the antioxidant potential of Kamut® wheat's free and bound phenolic extracts using an HPLC system equipped with three detectors. The bound extracts, released after alkaline hydrolysis, exhibited higher total phenolic and flavonoid content compared to the free extracts (p < 0.05). The total antioxidant capacity of bound extracts was six-fold greater than in free extracts (p < 0.05). The main antioxidants in free extracts were tyrosine, phenylalanine, tryptophan, and apigenin. In bound extracts, ferulic acid, its dimers and trimer were present. Kamut® wheat exhibited a source of dietary antioxidants and should be considered a potential ingredient for the development of functional foods. Also, the HPLC-triple detector system is effective for in-depth profiling of antioxidant compounds, paving the way for future research on similar grains.

11.
BMJ Open ; 14(2): e076867, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365296

RESUMEN

OBJECTIVES: We aimed to explore the association between age at menarche (AAM) and ovarian hyperstimulation syndrome (OHSS) in fresh in vitro fertilisation (IVF)/intracytoplasmic sperm injection (ICSI) cycles. DESIGN: A retrospective cohort study. SETTING: Data were collected from a large obstetrics and gynaecology hospital in Sichuan, China. PARTICIPANTS: This study included 17 419 eligible women aged ≤40 years who underwent the first IVF/ICSI cycles from January 2015 to December 2021. Women were divided into three groups according to their AAM: ≤12 years (n=5781), 13-14 years (n=9469) and ≥15 years (n=2169). RESULTS: The means of age at recruitment and AAM were 30.4 years and 13.1 years, respectively. Restricted cubic spline models suggested that early menarche age increased the risk of OHSS. The multivariable logistic analysis showed that women with menarche age ≤12 years were more likely to suffer from OHSS (OR 1.321, 95% CI 1.113 to 1.567) compared with those aged 13-14 years among the whole cohort. This significant relationship remained in women administered with different ovarian stimulation protocols and gonadotrophin doses. When stratified by female age, this correlation was presented only in patients aged ≤30 years (OR 1.362, 95% CI 1.094 to 1.694). And the mediation analysis showed that the relationship between AAM and OHSS was totally mediated by antral follicle counts (AFC). CONCLUSION: Menarche age earlier than 12 years may increase the OHSS risk in women aged ≤30 years through the mediation of AFC. More prospective studies are required to verify the results.


Asunto(s)
Síndrome de Hiperestimulación Ovárica , Masculino , Embarazo , Femenino , Humanos , Adulto , Síndrome de Hiperestimulación Ovárica/epidemiología , Síndrome de Hiperestimulación Ovárica/etiología , Inyecciones de Esperma Intracitoplasmáticas/métodos , Menarquia , Estudios Retrospectivos , Índice de Embarazo , Semen , Fertilización In Vitro/efectos adversos , Fertilización In Vitro/métodos , Inducción de la Ovulación/efectos adversos , Inducción de la Ovulación/métodos
12.
Am J Obstet Gynecol ; 230(4): 436.e1-436.e12, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38135094

RESUMEN

BACKGROUND: The influence of SARS-CoV-2 infection after embryo transfer on early pregnancy outcomes in in vitro fertilization or intracytoplasmic sperm injection-embryo transfer treatment remains inadequately understood. This knowledge gap endures despite an abundance of studies investigating the repercussions of preceding SARS-CoV-2 infection on early pregnancy outcomes in spontaneous pregnancies. OBJECTIVE: This study aimed to investigate the association between SARS-CoV-2 infection within 10 weeks after embryo transfer and early pregnancy outcomes in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. STUDY DESIGN: This prospective cohort study was conducted at a single public in vitro fertilization center in China. Female patients aged 20 to 39 years, with a body mass index ranging from 18 to 30 kg/m2, undergoing in vitro fertilization/intracytoplasmic sperm injection treatment, were enrolled between September 2022 and December 2022, with follow-up extended until March 2023. The study tracked SARS-CoV-2 infection time (≤14 days, ≤28 days, and ≤10 weeks after embryo transfer), symptoms, vaccination status, the interval between vaccination and embryo transfer, and early pregnancy outcomes, encompassing biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate. The study used single-factor analysis and multivariate logistic regression to examine the association between SARS-CoV-2 infection status, along with other relevant factors, and the early pregnancy outcomes. RESULTS: A total of 857 female patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were analyzed. In the first stage, SARS-CoV-2 infection within 14 days after embryo transfer did not have a significant negative association with the biochemical pregnancy rate (adjusted odds ratio, 0.74; 95% confidence interval, 0.51-1.09). In the second stage, SARS-CoV-2 infection within 28 days after embryo transfer had no significant association with the implantation rate (36.6% in infected vs 44.0% in uninfected group; P=.181). No statistically significant association was found with the clinical pregnancy rate after adjusting for confounding factors (adjusted odds ratio, 0.69; 95% confidence interval, 0.56-1.09). In the third stage, SARS-CoV-2 infection within 10 weeks after embryo transfer had no significant association with the early miscarriage rate (adjusted odds ratio, 0.77; 95% confidence interval, 0.35-1.71). CONCLUSION: Our study suggests that SARS-CoV-2 infection within 10 weeks after embryo transfer may not be negatively associated with the biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. It is important to note that these findings are specific to the target population of in vitro fertilization/intracytoplasmic sperm injection patients aged 20 to 39 years, without previous SARS-CoV-2 infection, and with a body mass index of 18 to 30 kg/m2. This information offers valuable insights, addressing current concerns and providing a clearer understanding of the actual risk associated with SARS-CoV-2 infection after embryo transfer.


Asunto(s)
Aborto Espontáneo , COVID-19 , Embarazo , Humanos , Masculino , Femenino , Resultado del Embarazo , Aborto Espontáneo/epidemiología , Aborto Espontáneo/etiología , Estudios Prospectivos , COVID-19/terapia , COVID-19/etiología , SARS-CoV-2 , Semen , Fertilización In Vitro/efectos adversos , Transferencia de Embrión , Índice de Embarazo , Estudios Retrospectivos
13.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38168839

RESUMEN

Cell clustering is typically the initial step in single-cell RNA sequencing (scRNA-seq) analyses. The performance of clustering considerably impacts the validity and reproducibility of cell identification. A variety of clustering algorithms have been developed for scRNA-seq data. These algorithms generate cell label sets that assign each cell to a cluster. However, different algorithms usually yield different label sets, which can introduce variations in cell-type identification based on the generated label sets. Currently, the performance of these algorithms has not been systematically evaluated in single-cell transcriptome studies. Herein, we performed a critical assessment of seven state-of-the-art clustering algorithms including four deep learning-based clustering algorithms and commonly used methods Seurat, Cosine-based Tanimoto similarity-refined graph for community detection using Leiden's algorithm (CosTaL) and Single-cell consensus clustering (SC3). We used diverse evaluation indices based on 10 different scRNA-seq benchmarks to systematically evaluate their clustering performance. Our results show that CosTaL, Seurat, Deep Embedding for Single-cell Clustering (DESC) and SC3 consistently outperformed Single-Cell Clustering Assessment Framework and scDeepCluster based on nine effectiveness scores. Notably, CosTaL and DESC demonstrated superior performance in clustering specific cell types. The performance of the single-cell Variational Inference tools varied across different datasets, suggesting its sensitivity to certain dataset characteristics. Notably, DESC exhibited promising results for cell subtype identification and capturing cellular heterogeneity. In addition, SC3 requires more memory and exhibits slower computation speed compared to other algorithms for the same dataset. In sum, this study provides useful guidance for selecting appropriate clustering methods in scRNA-seq data analysis.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Análisis de Secuencia de ARN/métodos , Reproducibilidad de los Resultados , Análisis de la Célula Individual/métodos , Algoritmos , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos
14.
Biol. Res ; 42(4): 505-516, 2009. tab, graf, ilus
Artículo en Inglés | LILACS | ID: lil-537110

RESUMEN

Calreticulin (CRT), a Ca2+-binding storage protein and chaperone in the endoplasmic reticulum, modulates cell adhesiveness and integrin-dependent Ca2+ signaling. However, the role of CRT during implantation remains poorly understood. In the present study, we characterized the expression of CRT mRNA and the protein in mouse endometria from pregnancy DI to D7. Real-Time PCR and in situ hybridization results showed that the levels of CRT mRNA in the endometria of pregnant mice were significantly higher than those of non-pregnant mice (P<0.05), and increased gradually from pregnancy DI to D4, reaching the máximum level on D4, followed by a plateau from D4 to D7. Using immunofluorescence histochemistry and western blot, changes of CRT expression in the endometria of pregnant mice were consistent with the expression of CRT mRNA. Furthermore, antisense CRT oligodeoxynucleotide was injected into the uterus horns of pregnant mice (D3) to investígate its effect on embryo implantation. The result showed that the number of implanted embryos markedly decreased in the side of uterine horns receiving antisense CRT oligodeoxynucleotide(í><0.05). These findings suggest that CRT may play an important role in embryo implantation in mice.


Asunto(s)
Animales , Femenino , Masculino , Ratones , Embarazo , Calreticulina/fisiología , Implantación del Embrión/fisiología , Endometrio/fisiología , Western Blotting , Calreticulina/genética , Calreticulina/metabolismo , Endometrio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA