Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 166: 214048, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39317044

RESUMEN

Designing bio-based polyurethane materials with excellent mechanical, biocompatibility, and self-healing properties simultaneously is currently a significant challenge due to the increasing demands for high-performance materials. In this study, we propose an asymmetric backbone strategy utilizing bio-based polycarbonate as the soft segment, equimolar ratios of lysine diisocyanate and isophorone diisocyanate as asymmetric hard segments, and isophorone diamine as the chain extender. The resulting polyurethane elastomers exhibit excellent mechanical properties, including high tensile stress (46.1 MPa), toughness (213.9 MJ/m3), and fracture energy (98.47 kJ/m3). The polyurethane elastomers demonstrate good self-healing and recyclable properties under simple heat treatment. Furthermore, biological experiments confirm the degradability and bio-safety of the bio-based polyurethane elastomers, which have shown potential in accelerating wound healing in mice when used as surgical sutures. These findings highlight the promising prospects of the obtained polyurethane elastomers in various applications, including biomedicine, flexible sensing, and electronic components.

2.
Infect Drug Resist ; 17: 2485-2499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915321

RESUMEN

Objective: To preliminarily assess the prevalence and control effect of tuberculosis and drug-resistant tuberculosis (TB) in Anhui province, and analyze the trends in the changing drug resistance spectrum of Mycobacterium tuberculosis (Mtb) isolated in Anhui province from 2016 to 2022. Methods: From 2016 to 2022, a total of 2336 culture-positive tuberculosis strains were collected from four drug resistance monitoring sites. Patient demographic information was collected and drug susceptibility testing was conducted. Results: Among the 2336 Mycobacterium tuberculosis complex strains, 1788 (76.54%) were from male patients and 548 (23.46%) were from female patients. The majority were of Han ethnicity, from rural areas, and employed in agriculture, with 12.54% (285/2273) having diabetes. A total of 1893 (81.04%) strains were sensitive to all six anti-TB drugs tested, and 443 (18.96%) strains were resistant to at least one or more anti-TB drugs. The drug resistance rate for patients undergoing initial treatment was 16.80% (348/2071), and 35.85% (95/265) for those receiving retreatment. Among the six anti-TB drugs, the resistance rates from highest to lowest were: INH (10.55%, 236/2336), SM (8.18%, 183/2336), OFX (6.53%, 146/2336), RFP (5.95%, 133/2336), EMB (2.37%, 53/2336), KM (1.97%, 44/2336). Significant differences were observed in MDR strains across different ages, types, with or without diabetes, and geographical sources (χ2=14.895,76.534,6.032,5.109, all P<0.05). Conclusion: The tuberculosis prevention and control measures have controlled the drug resistance rate of Mycobacterium tuberculosis to a certain extent. However, there are still statistical differences in drug resistance rates among TB patients with different categories, age groups, regions, and diabetic diseases. Early detection and prompt treatment of patients with drug-resistant TB remain critical to controlling the spread of this disease.

3.
Langmuir ; 40(21): 10980-10991, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739526

RESUMEN

Functionalized hexagonal boron nitride nanosheets (BNNSs) have arisen as compelling anticorrosive additives, yet the precise mechanism of their corrosion resistance enhancement in coatings remains unclear. Here, polyethylenimine functionalized BNNSs (PEI-BNNSs) with approximately 6-11 layers were prepared through a "one-step" method. Then, the PEI-BNNSs/Waterborne epoxy (WEP) composite coatings were incorporated via the waterborne latex blending method for the anticorrosion of the Q235 substrate. The impedance modulus (|Z|f = 0.01 Hz) of 0.5 wt % PEI-BNNSs/WEP composite coating soaked in 3.5 wt % NaCl solution for 35 days increased by 4 orders of magnitude compared to pure WEP coating, exhibiting exceptional long-term resistance against corrosion. The positron annihilation lifetime spectroscopy and corrosion product analysis demonstrated that the reinforced anticorrosion capabilities are not solely ascribed to the "tortuous path effect" arising from BNNSs impermeability. These mechanisms also encompass the reduction in free volume fraction and radius of the free volume cavities within the composite coating brought about by the PEI molecules. Additionally, the increase in coating adhesion, promoted by PEI, plays an important role in augmenting the barrier properties against corrosive agents. This study provided a full comprehension of the role played by functionalized BNNSs in fortifying the anticorrosion attributes of WEP coatings.

4.
Int J Biol Macromol ; 259(Pt 2): 129265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218292

RESUMEN

The flame retardants and electromagnetic interference (EMI) shielding performance were enhanced by using imidazolium-functionalized polyurethane (IPU) modified multi-walled carbon nanotubes (CNTs) and ammonium polyphosphate (APP) for polylactic acid (PLA)/polycaprolactone (PCL) composites. The PLA/PCL/10APP/8CNT/1.6IPU composite containing 10 wt% APP and 8 wt% imidazolium modified CNTs reached the limiting oxygen index (LOI) value of 30.3 % and passed the V-0 rating in UL-94 tests. Moreover, the peak of the heat release rate (pHRR) and total heat release (THR) for this composite reached around 302 kW/m2 and 64 KJ/m2, which were decreased by 39.1 % and 15.8 % compared with that of PLA/PCL/10APP composite. The improved flame retardancy was attributed to the interplay of catalytic, barrier, and condensed char forming of imidazolium-modified CNTs and APP. IPU catalyzed the charring effect of the polymer matrix during combustion and regulated the migration of more CNTs to disperse at the two-phase interface. The dispersion of imidazolium-modified CNTs and co-continuous phase structure of the composites can establish continuous conductive pathways. The PLA/PCL/APP/CNT/IPU composite obtained a higher conductivity compared to the PLA/PCL/APP/CNT composite and whose EMI SE reached 33.9 dB, which is a promising candidate for next-generation sustainable and protective plastics.


Asunto(s)
Caproatos , Retardadores de Llama , Lactonas , Nanotubos de Carbono , Poliésteres , Catálisis , Conductividad Eléctrica , Polifosfatos
5.
ChemSusChem ; 17(5): e202301656, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38102888

RESUMEN

A major hindrance in the commercialization of alkaline polyelectrolyte-based electrochemical energy conversion devices is the development of durable anion exchange membranes (AEMs). Despite many alkali-stable cations that have been explored, the stability of these cationic moieties at the membrane scale is in the blind. Herein, we present a molecularly designed polyaromatic AEM with cationic moieties in an alternating manner to unbiasedly compare the alkaline stability of piperidinium and ammonium groups at the membrane state. Using nuclear magnetic resonance spectroscopy, we demonstrate that the pentyltrimethyl group is about 2-fold more stable than piperidinium within a polyaromatic scaffold, either in ex-situ alkaline soaking or in-situ cell operation. This finding challenges the judgment extrapolated from the stability trend of cations, that is, the piperidinium-functionalized AEM is more alkali-stable than the counterparts based on quaternary ammoniums. Moreover, the deterioration mechanism of piperidinium moiety after being embedded in polyaromatic backbone is rationalized by density functional theory.

6.
ACS Appl Mater Interfaces ; 15(33): 39740-39751, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556599

RESUMEN

Functional materials for electromagnetic interference (EMI) shielding are a consistently hot topic in the booming communication engineering, proceeding the development that tends to the multifunctional EMI shielding materials. Herein, a series of carbonized syndiotactic polystyrene/carbon nanotube/MXene (CsPS/CNT/MXene) hybrid aerogels were fabricated for EMI shielding and solar thermal energy conversion purposes. To fabricate the hybrid aerogels, a porous CNT/MXene framework was initially prepared using freeze-casting. Subsequently, sPS was infused into the porous structure, followed by hyper-cross-linking and carbonization of sPS under an inert atmosphere. The resulting aerogels exhibited a distinctive egg-box structure, comprising numerous nanofibrous carbon microspheres embedded within the lamellar framework. The mass ratio between CNT and MXene was regulated to identify an optimum aerogel, that is, the CCM-4-6, which exhibited impressive properties including Young's compression modulus of 0.67 MPa, a water contact angle of 137.6 ± 4.1°, a specific surface area of 110 m2 g-1, an electrical conductivity of 43.0 S m-1, and an EMI SE value of 40 dB. Meanwhile, phase-change composites were fabricated through encapsulating paraffin wax within the hybrid aerogels. For the CCM-4-6 aerogel, a noteworthy encapsulation ratio was achieved at about 76.7%, along with remarkable latent heat, good thermal reliability, and commendable solar thermal energy conversion capacity. This study presents a facile route to prepare multifunctional EMI shielding materials.

7.
Int J Biol Macromol ; 242(Pt 3): 125079, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245756

RESUMEN

The interfacial compatibilization and dispersion of carbon nanotubes (CNTs) in incompatible poly(lactic acid)/poly(butylene terephthalate adipate) (PLA/PBAT) composites are key points for evaluating the performance of the composites. To address this, a novel compatibilizer, sulfonate imidazolium polyurethane (IPU) containing PLA and poly(1,4-butylene adipate) segments modified CNTs, employed in conjunction with multi-component epoxy chain extender (ADR) to toughen synergistically PLA/PBAT composites. The thermal stability, rheological behavior, morphology, and mechanical properties of PLA/PBAT composites were performed by TGA, DSC, dynamic rheometer, SEM, tensile, and notched Izod impact measure. Moreover, the elongation at break and notched Izod impact strength of PLA5/PBAT5/4C/0.4I composites achieved 341 % and 61.8 kJ/m2 respectively, whose tensile strength was 33.7 MPa. The interfacial compatibilization and adhesion were enhanced because of the interface reaction catalyzed by IPU and the refined co-continuous phase structure. The CNTs non-covalently modified by IPU that bridged at the PBAT phase and interface transferred the stress into the matrix, prevented the development of microcracks, and absorbed impact fracture energy in the form of pull-out of the matrix, inducing shear yielding and plastic deformation. This new type of compatibilizer with modified CNTs is of great significance for realizing the high performance of PLA/PBAT composites.


Asunto(s)
Nanotubos de Carbono , Poliuretanos , Poliésteres/química , Adipatos
8.
ACS Appl Mater Interfaces ; 15(16): 20310-20316, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36994986

RESUMEN

Donor-acceptor two-dimensional covalent-organic frameworks (COFs) have great potential as photocatalysts for hydrogen evolution because of their tunable structures, ordered and strong stacking, high crystallinity, and porosity. Herein, an acceptor unit, namely phthalimide, has been employed for the first time to construct COFs. Two donor-acceptor COFs (TAPFy-PhI and TAPB-PhI) have been successfully synthesized via a Schiff base reaction using phthalimide as the acceptor and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPFy) and 1,3,5-tris(4-aminophenyl)benzene (TAPB) as donors. The synthesized COFs exhibited high crystallinity, permanent porosity, excellent chemical stability, suitable band gaps, and broad visible-light absorption. In the presence of ascorbic acid (sacrificial reagent), the TAPFy-PhI COF exhibited an efficient photocatalytic performance with a hydrogen evolution rate of 1763 µmol g-1 h-1. Moreover, the photocatalytic performance was further improved by the addition of Pt (1 wt %) as a cocatalyst, and the hydrogen evolution rate reached 2718 µmol g-1 h-1.

9.
Int J Biol Macromol ; 227: 1182-1190, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462589

RESUMEN

Imidazolium-functionalized polyurethane (IPU) functionalized multi-walled carbon nanotubes (CNTs) was used to control interfacial distribution and compatibilization of CNTs, and enhance electromagnetic interference (EMI) shielding and mechanical properties of poly(lactic acid)/polycaprolactone (PLA/PCL) based composites. IPU facilitated the uniformly dispersion of CNTs and induced the selectively location of CNTs at the interface and PCL phase, which is beneficial to build more effective three-dimensional network structure at the co-continuous interphase. The EMI shielding properties for the PLA/PCL/8CNT/0.8IPU composites have been evidently increased to 35.6 dB. Meanwhile, the elongation at break and the notched impact strength of the PLA/PCL/8CNT/0.8IPU composite reached 307.8 % and 51.3 kJ/m2, respectively, which are increased by 27 and 53 % of PLA/PCL/8CNT because of the compatibilization effect of IPU and the distribution of CNTs. This work presented a promising prospect of polymer-based composites with satisfactory EMI shielding and mechanical properties.


Asunto(s)
Nanotubos de Carbono , Poliésteres , Polímeros
10.
Int J Biol Macromol ; 221: 573-584, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36087754

RESUMEN

In order to synchronously improve mechanical and flame retardant properties of polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) composites, a series of multifunctional composites containing multi-walled carbon nanotubes (CNTs), ammonium polyphosphate (APP) and a commercial multifunctional epoxy oligomer (MEO) as chain extender were prepared via melt blending. The results show that the optimal flame retardant properties of PLA5-PBAT5/10A/6C composite containing 6 % CNTs and 10 wt% APP, presented the limited oxygen index reached 28.3 % and exhibited a decrease in peak heat release rate (pHRR) and total heat release (THR) to 368 kJ/m2 and 72 MJ/m2, respectively because of the co-continuous phase, CNTs network and condensed effect of APP. Meanwhile, the construction of co-continuous phases endows PLA5-PBAT5 with better mechanical compared to PLA8-PBAT2 composites. The elongation at break reaches (245.9 %) and notched impact strength (16.5 kJ/m2) of PLA5-PBAT5/10A/6C were higher than the PLA8-PBAT2/10A/6C by 16.0 and 283.7 %.


Asunto(s)
Compuestos de Amonio , Retardadores de Llama , Nanotubos de Carbono , Polifosfatos , Poliésteres , Adipatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA