Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38929712

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the most prevalent chronic liver disease, closely linked to the escalating rates of diabesity. The Western diet's abundance of fat and fructose significantly contributes to MASLD, disrupting hepatic glucose metabolism. We previously demonstrated that a high-fat and high-fructose diet (HFHFD) led to increased body and liver weight compared to the low-fat diet (LFD) group, accompanied by glucose intolerance and liver abnormalities, indicating an intermediate state between fatty liver and liver fibrosis in the HFHFD group. Sirtuins are crucial epigenetic regulators associated with energy homeostasis and play a pivotal role in these hepatic dysregulations. Our investigation revealed that HFHFD significantly decreased Sirt1 and Sirt7 gene and protein expression levels, while other sirtuins remained unchanged. Additionally, glucose 6-phosphatase (G6Pase) gene expression was reduced in the HFHFD group, suggesting a potential pathway contributing to fibrosis progression. Chromatin immunoprecipitation analysis demonstrated a significant increase in histone H3 lysine 18 acetylation within the G6Pase promoter in HFHFD livers, potentially inhibiting G6Pase transcription. In summary, HFHFD may inhibit liver gluconeogenesis, potentially promoting liver fibrosis by regulating Sirt7 expression. This study offers an epigenetic perspective on the detrimental impact of fructose on MASLD progression.

2.
Lab Invest ; 103(1): 100017, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748194

RESUMEN

FoxO1 is an important transcriptional factor that regulates cell survival and metabolism in many tissues. Deleting FoxO1 results in embryonic death due to failure of chorioallantoic fusion at E8.5; however, its role in placental development during mid-late gestation is unclear. In both human patients with gestational diabetes and pregnant mice with hyperglycemia, placental FoxO1 expression was significantly increased. Using FoxO1+/- mice, the effects of FoxO1 haploinsufficiency on placental development under normoglycemia and hyperglycemia were investigated. With FoxO1 haploinsufficiency, the term placental weight increased under both normal and hyperglycemic conditions. Under normoglycemia, this weight change was associated with a general enlargement of the labyrinth, along with increased cell proliferation, decreased cell apoptosis, and decreased expression of p21, p27, Casp3, Casp8, and Rip3. However, under hyperglycemia, the placental weight change was associated with increased fetal blood space, VEGFA overexpression, and expression changes of the angiogenic markers, Eng and Tsp1. In conclusion, FoxO1 plays a role in regulating cell proliferation, cell survival, or angiogenesis, depending on blood glucose levels, during placenta development.


Asunto(s)
Diabetes Gestacional , Proteína Forkhead Box O1 , Hiperglucemia , Animales , Femenino , Humanos , Ratones , Embarazo , Proliferación Celular/genética , Diabetes Gestacional/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Hiperglucemia/genética , Hiperglucemia/metabolismo , Placenta/metabolismo
3.
J Nutr Biochem ; 111: 109157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150682

RESUMEN

Gata4 is a member of the zinc finger GATA transcription factor family and is required for liver development during the embryonic stage. Gata4 expression is repressed during NAFLD progression, however how it functions in this situation remains unclear. Here, Gata4 was deleted specifically in hepatocytes via Cre recombinase driven by the Alb promoter region. Under a high-fat diet (HFD) or methionine and choline deficient diet (MCD), Gata4 knockout (KO) male, but not female, mice displayed more severe NAFLD or NASH, evidenced by increased steatosis, fibrosis, as well as a higher NAS score and serum ALT level. The Gata4KO male liver exposed to a HFD or MCD had a reduced ratio of pACC/ACC, similar to the Gata4KO hepatocytes treated with palmitic acid. More cell apoptosis, which is associated with activated JNK signaling and inhibited NFκB signaling, was observed in the Gata4KO male liver and isolated hepatocytes. However, the inflammatory status in the Gata4KO male liver was similar to the control liver. Importantly, lower activation of AKT signaling in the liver, which is consistent with de-sensitized insulin signaling in isolated hepatocytes, was found in the Gata4KO male. In summary, our data demonstrated that loss of Gata4 in hepatocytes promoted NAFLD progression in male mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Insulina/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Apoptosis , Metionina/metabolismo , Colina/farmacología , Ratones Noqueados , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
4.
Metabolites ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355117

RESUMEN

The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.

5.
Front Biosci (Landmark Ed) ; 26(11): 965-976, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856745

RESUMEN

Introduction: Hyperglycemic conditions achieved during pregnancy have been shown to have detrimental effects to fetal development and increase the prevalence of childhood comorbidities. However, the mechanisms in which diabetic pregnancies affect placental development and subsequently contribute to adverse health effects on the mother and offspring remain unclear. Research design and methods: Streptozotocin was used to induce gestational diabetes in mice. In this model, hyperglycemia was established at embryonic day 3.5 (E3.5). Pregnancy mass was collected at E10.5, E12.5, E14.5, and E16.5 for different assessments. Results: Both placental and embryonic weights were found to be significantly elevated at E16.5. At E14.5, a significantly larger junctional zone with increased number of glycogen trophoblasts was found in the placentas from hyperglycemic pregnancies (HG group) compared to the placentas from normoglycemic pregnancies (NG group). Importantly, the HG placenta exhibited decreased trophoblast giant cell (TGC) association and TUNEL+ cells, and increased expression of α-SMA on the spiral artery, suggesting arterial remodeling was impacted. Moreover, the interhemal membrane of the labyrinth layer, was found to be thicker in the HG placentas. Furthermore, hyperglycemia resulted in more offspring congenital defects, which were associated with a thicker interhemal membrane. Conclusions: Together, these results suggest that gestational diabetes perturbs proper placental development and function, specifically spiral artery remodeling and angiogenesis, thereby negatively impacting embryonic development.


Asunto(s)
Hiperglucemia , Placenta , Animales , Arterias , Femenino , Ratones , Placentación , Embarazo , Trofoblastos
6.
Liver Int ; 41(6): 1305-1319, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33529448

RESUMEN

BACKGROUND & AIMS: Pregnant women may transmit their metabolic phenotypes to their offspring, enhancing the risk for nonalcoholic fatty liver disease (NAFLD); however, the molecular mechanisms remain unclear. METHODS: Prior to pregnancy female mice were fed either a maternal normal-fat diet (NF-group, "no effectors"), or a maternal high-fat diet (HF-group, "persistent effectors"), or were transitioned from a HF to a NF diet before pregnancy (H9N-group, "effectors removal"), followed by pregnancy and lactation, and then offspring were fed high-fat diets after weaning. Offspring livers were analysed by functional studies, as well as next-generation sequencing for gene expression profiles and DNA methylation changes. RESULTS: The HF, but not the H9N offspring, displayed glucose intolerance and hepatic steatosis. The HF offspring also displayed a disruption of lipid homeostasis associated with an altered methionine cycle and abnormal one-carbon metabolism that caused DNA hypermethylation and L-carnitine depletion associated with deactivated AMPK signalling and decreased expression of PPAR-α and genes for fatty acid oxidation. These changes were not present in H9N offspring. In addition, we identified maternal HF diet-induced genes involved in one-carbon metabolism that were associated with DNA methylation modifications in HF offspring. Importantly, the DNA methylation modifications and their associated gene expression changes were reversed in H9N offspring livers. CONCLUSIONS: Our results demonstrate for the first time that maternal HF diet disrupted the methionine cycle and one-carbon metabolism in offspring livers which further altered lipid homeostasis. CpG islands of specific genes involved in one-carbon metabolism modified by different maternal diets were identified.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Efectos Tardíos de la Exposición Prenatal , Animales , Carbono/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Embarazo
7.
J Nutr Biochem ; 86: 108495, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949717

RESUMEN

Novel progress has been made to understand the adverse pathophysiology in the pancreas of offspring exposed to overnutrition in utero. Our study is the first to evaluate whether the adverse effects of maternal overnutrition on offspring ß-cell function are reversible or preventable through preconception maternal diet interventions. Herein, offspring mice were exposed in utero to one of the following: maternal normal-fat diet (NF group), maternal high-fat diet (HF group) or maternal diet transition from an HF to NF diet 9 weeks before pregnancy (H9N group). Offspring mice were subjected to postweaning HF diet for 12 weeks. HF offspring, but not H9N, displayed glucose intolerance and insulin resistance. HF male offspring had enlarged islet ß-cells with reduced ß-cell density, whereas, H9N male offspring did not show these changes. Co-immunofluorescent (Co-IF) staining of glucose transporter 2 (Glut2) and insulin (Ins) revealed significantly more Glut2+Ins- cells, indicative of insulin degranulation, in HF male offspring but not H9N. In addition, Co-IF of insulin and p-H3S10 indicated that ß cells of HF male offspring, but not H9N, had proliferation defects likely due to inhibited protein kinase B (AKT) phosphorylation. In summary, our study demonstrates that maternal H9N diet effectively prevents functional deterioration of ß cells seen in HF male offspring by avoiding ß-cell proliferation defects and degranulation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Células Secretoras de Insulina/patología , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Proliferación Celular , Femenino , Intolerancia a la Glucosa , Homeostasis , Insulina/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Masculino , Ratones , Obesidad/metabolismo , Páncreas/metabolismo , Fenotipo , Embarazo , Preñez , Efectos Tardíos de la Exposición Prenatal
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165955, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877749

RESUMEN

While the correlation between diabetes during pregnancy and birth defects is well-established, how hyperglycemia causes developmental abnormalities remains unclear. In this study, we developed a novel "hyperglycemic" chicken embryonic model by administrating various doses of glucose to fertilized eggs at embryonic stages HH16 or HH24. When the embryos were collected at HH35, the LD50 was 1.57 g/Kg under HH16 treatment and 0.93 g/Kg under HH24 treatment, indicating that "hyperglycemic" environments can be lethal for the embryos. When exposed to a dose equal to or higher than 1 g/Kg glucose at HH16 or HH24, more than 40% of the surviving chicken embryos displayed heart defects and/or limb defects. The limb defects were associated with proliferation defects of both the wing and leg buds indicated by reduced numbers of p-H3S10 labeled cells. These limb defects were also associated with ectopic apoptosis in the leg bud and expression changes of key apoptotic genes. Furthermore, glucose treatment induced decreased expression of genes involved in Shh-signaling, chondrogenesis, and digit patterning in the limb bud. In summary, our data demonstrated that a high-glucose environment induces congenital heart and limb defects associated with disrupted cell proliferation and apoptosis, possibly through depressed Shh-signaling.


Asunto(s)
Apoptosis , Hiperglucemia/patología , Deformidades Congénitas de las Extremidades/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Pollos , Modelos Animales de Enfermedad , Glucosa/administración & dosificación , Glucosa/farmacología , Hiperglucemia/inducido químicamente , Hiperglucemia/genética , Deformidades Congénitas de las Extremidades/inducido químicamente , Deformidades Congénitas de las Extremidades/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA