Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Diabetes ; 16(4): e13540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599845

RESUMEN

OBJECTIVE: Mitochondria-associated membranes (MAMs) serve pivotal functions in hepatic insulin resistance (IR). Our aim was to explore the potential role of MAMs in mitigating hepatic IR through exercise and to compare the effects of different intensities of exercise on hepatic MAMs formation in high-fat diet (HFD) mice. METHODS: Male C57BL/6J mice were fed an HFD and randomly assigned to undergo supervised high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). IR was evaluated using the serum triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-C), glucose tolerance test (GTT), and insulin tolerance test (ITT). Hepatic steatosis was observed using hematoxylin-eosin (H&E) and oil red O staining. The phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K-AKT-GSK3ß) signaling pathway was assessed to determine hepatic IR. MAMs were evaluated through immunofluorescence (colocalization of voltage-dependent anion-selective channel 1 [VDAC1] and inositol 1,4,5-triphosphate receptor [IP3R]). RESULTS: After 8 weeks on an HFD, there was notable inhibition of the hepatic PI3K/Akt/GSK3ß signaling pathway, accompanied by a marked reduction in hepatic IP3R-VDAC1 colocalization levels. Both 8-week HIIT and MICT significantly enhanced the hepatic PI3K/Akt/GSK3ß signaling and colocalization levels of IP3R-VDAC1 in HFD mice, with MICT exhibiting a stronger effect on hepatic MAMs formation. Furthermore, the colocalization of hepatic IP3R-VDAC1 positively correlated with the expression levels of phosphorylation of protein kinase B (p-AKT) and phosphorylation of glycogen synthase kinase 3 beta (p-GSK3ß), while displaying a negative correlation with serum triglyceride/high-density lipoprotein cholesterol levels. CONCLUSION: The reduction in hepatic MAMs formation induced by HFD correlates with the development of hepatic IR. Both HIIT and MICT effectively bolster hepatic MAMs formation in HFD mice, with MICT demonstrating superior efficacy. Thus, MAMs might wield a pivotal role in exercise-induced alleviation of hepatic IR.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Dieta Alta en Grasa/efectos adversos , Membranas Asociadas a Mitocondrias , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Triglicéridos , Lipoproteínas HDL , Colesterol
2.
Food Chem ; 450: 139276, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38626711

RESUMEN

This study presents a new method combining cold plasma-activated oxygen (CPAO) and microwave (MW) to decontaminate milkshake powder, exploring its effectiveness, mechanisms, and quality impact. CPAO (6 min) alone reduced bacterial load by 0.419 log CFU/g, and MW (3 min) by 0.030 log CFU/g. However, their co-application significantly amplified decontamination, achieving a 1.265 log CFU/g reduction. CPAO-MW co-treatment inflicted more oxidative damage on bacterial cell membranes and intracellular antioxidant defense system, leading to higher mortality. It also raised protein and lipid oxidation, while decreasing vitamin C and A levels in the powder. Specifically, CPAO (6 min)-MW (3 min) co-treatment increased the carbonyl content from 0.438 to 0.891 nmol/mg protein, malondialdehyde from 0.824 to 0.996 mg/kg, and lowered vitamin C from 162.151 to 137.640 mg/kg, and vitamin A from 2.05 to 1.38 mg/kg. This study shows CPAO-MW is effective for decontaminating powdered foods but highlights a need to reduce negative effects.

3.
Viruses ; 16(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543744

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo Hemorrhagic virus (CCHFV), is listed in the World Health Organization's list of priority diseases. The high fatality rate in humans, the widespread distribution of CCHFV, and the lack of approved specific vaccines are the primary concerns regarding this disease. We used microfluidic technology to optimize the mRNA vaccine delivery system and demonstrated that vaccination with nucleoside-modified CCHFV mRNA vaccines encoding GnNSmGc (vLMs), Gn (vLMn), or Gc (vLMc) induced different immune responses. We found that both T-cell and B-cell immune responses induced by vLMc were better than those induced by vLMn. Interestingly, immune responses were found to be lower for vLMs, which employed NSm to link Gn and Gc for non-fusion expression, compared to those for vLMc. In conclusion, our results indicated that NSm could be a factor that leads to decreased specific immune responses in the host and should be avoided in the development of CCHFV vaccine antigens.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Animales , Ratones , Vacunas de ARNm , Vacunación , Inmunidad Celular
4.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947500

RESUMEN

Nitrogen-vacancy centers in diamond have been developed as a sensitive magnetic sensor and broadly applied on condensed matter physics. We present a design of a scanning probe microscope based on a nitrogen-vacancy center that can operate under various experimental conditions, including a broad temperature range (20-500 K) and a high-vacuum condition (1 × 10-7 mbar). The design of a compact and robust scanning head and vacuum chamber system is presented, which ensures system stability while enabling the convenience of equipment operations. By showcasing the temperature control performance and presenting confocal images of a single-layer graphene and a diamond probe, along with images of a ferromagnetic strip and an epitaxial BiFeO3 film on the SrTiO3 substrate, we demonstrate the reliability of the instrument. Our study proposes a method and a corresponding design for this microscope that extends its potential applications in nanomagnetism and spintronics.

5.
ACS Omega ; 8(31): 28487-28498, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576691

RESUMEN

Reducing production costs is one of the main objectives of process intensification; in this work, production costs of the distillation process are reduced by reducing equipment size and utility consumption from the perspective of process optimization to achieve the purpose of process intensification. The application of intelligent optimization algorithms in the optimization process of distillation is vital to achieving high efficiency and low costs. Combining the harmony search algorithm with the characteristics of distillation optimization, a new distillation harmony search algorithm (DHSA) was proposed, which includes the self-adaptive adjustment of parameters, roulette selection strategy, and ratio optimization strategy. Benefiting from the DHSA, the optimal total annual cost and calculation times were remarkably reduced when compared with reported algorithms in the optimization of four distillation cases including the two-column model, three-column model, reactive distillation column model, and dividing-wall extractive distillation column model. In addition, the highest coefficient of variation of DHSA in 10 parallel calculations is 1.25%. These results indicate that DHSA has the advantages of a higher-quality solution, less computing time, and higher stability, which not only improves the optimization efficiency and quality but also inspires the optimization strategies for other algorithms.

6.
Front Endocrinol (Lausanne) ; 14: 1189553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396166

RESUMEN

Objective: We sought to evaluate the association between visceral adiposity index (VAI) and the incidence of gallstones and the age at first gallstone surgery in adults in the United States. Methods: We selected individuals from the National Health and Nutrition Examination Survey (NHANES) database from 2017 to 2020 and evaluated the association between VAI and gallstone incidence and age at first gallstone surgery using logistic regression analysis, subgroup analysis, and dose-response curves. Results: A total of 7,409 participants aged >20 years were included in our study; 767 had a self-reported history of gallstones. After adjustment for all confounding factors, for each unit of VAI after Ln conversion, gallstone prevalence increased by 31% (OR = 1.31, 95% CI: 1.17, 1.48), while the first gallstone surgery was 1.97 years earlier (ß = -1.97, 95% CI: -3.35, -0.42). The dose-response curves showed a positive correlation between VAI and gallstone prevalence. There was a negative correlation between increased VAI and age at first gallstone surgery. Conclusion: A higher VAI is positively associated with the prevalence of gallstones and may lead to an earlier age at first gallstone surgery. This is worthy of attention, although causality cannot be established.


Asunto(s)
Cálculos Biliares , Adulto , Humanos , Estados Unidos/epidemiología , Cálculos Biliares/epidemiología , Cálculos Biliares/etiología , Cálculos Biliares/cirugía , Factores de Riesgo , Estudios Transversales , Encuestas Nutricionales , Adiposidad , Prevalencia , Obesidad Abdominal/epidemiología
7.
Front Cell Infect Microbiol ; 13: 1174030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274315

RESUMEN

Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Virus de la Fiebre del Valle del Rift , Vacunas , Animales , Humanos , Virus de la Fiebre del Valle del Rift/genética
8.
BMC Anesthesiol ; 23(1): 154, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142982

RESUMEN

BACKGROUND: Postoperative sleep disturbance (PSD) is a prevalent clinical complication that may arise due to various factors. The purpose of this investigation is to identify the risk factors for PSD in spinal surgery and establish a risk prediction nomogram. METHODS: The clinical records of individuals who underwent spinal surgery from January 2020 to January 2021 were gathered prospectively. The least absolute shrinkage and selection operator (LASSO) regression, along with multivariate logistic regression analysis, was employed to establish independent risk factors. A nomogram prediction model was devised based on these factors. The nomogram's effectiveness was evaluated and verified via the receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis (DCA). RESULTS: A total of 640 patients who underwent spinal surgery were analyzed in this investigation, among which 393 patients experienced PSD with an incidence rate of 61.4%. After conducting LASSO regression and logistic regression analyses using R software on the variables in training set, 8 independent risk factors associated to PSD were identified, including female, preoperative sleep disorder, high preoperative anxiety score, high intraoperative bleeding volume, high postoperative pain score, dissatisfaction with ward sleep environment, non-use of dexmedetomidine and non-use of erector spinae plane block (ESPB). The nomogram and online dynamic nomogram were constructed after incorporating these variables. In the training and validation sets, the area under the curve (AUC) in the receiver operating characteristic (ROC) curves were 0.806 (0.768-0.844) and 0.755 (0.667-0.844), respectively. The calibration plots indicated that the mean absolute error (MAE) values in both sets were respectively 1.2% and 1.7%. The decision curve analysis demonstrated the model had a substantial net benefit within the range of threshold probabilities between 20% and 90%. CONCLUSIONS: The nomogram model proposed in this study included eight frequently observed clinical factors and exhibited favorable accuracy and calibration. TRIAL REGISTRATION: The study was retrospectively registered with the Chinese Clinical Trial Registry (ChiCTR2200061257, 18/06/2022).


Asunto(s)
Nomogramas , Trastornos del Sueño-Vigilia , Adulto , Femenino , Humanos , Pueblo Asiatico , Procedimientos Neuroquirúrgicos , Estudios Prospectivos
9.
Anal Chem ; 95(15): 6253-6260, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37018490

RESUMEN

Acoustic mixing of droplets is a promising way to implement biosensors that combine high speed and minimal reagent consumption. To date, this type of droplet mixing is driven by a volume force resulting from the absorption of high-frequency acoustic waves in the bulk of the fluid. Here, we show that the speed of these sensors is limited by the slow advection of analyte to the sensor surface due to the formation of a hydrodynamic boundary layer. We eliminate this hydrodynamic boundary layer by using much lower ultrasonic frequencies to excite the droplet, which drives a Rayleigh streaming that behaves essentially like a slip velocity. At equal average flow velocity in the droplet, both experiment and three-dimensional simulations show that this provides a three-fold speedup compared to Eckart streaming. Experimentally, we further shorten a SARS-CoV-2 antibody immunoassay from 20 min to 40 s taking advantage of Rayleigh acoustic streaming.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Acústica , Ultrasonido , Inmunoensayo
10.
Water Res ; 238: 119918, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121199

RESUMEN

The environmental behavior of radioactive cesium (RCs) in contaminated areas is generally governed by soil and sediment components and natural weathering conditions. In this study, desorption tests and spectroscopic approaches were used to explore the interaction between the weathering of micaceous minerals (i.e., biotite and phlogopite) and the adsorption of Cs+ and the critical role of weathering in the environmental behavior of RCs. Results showed that the reaction sequence between weathering and Cs+ adsorption significantly affected the surface species of Cs+ and the structure of biotite and phlogopite. Regardless of whether it occurred before, after, or during Cs+ adsorption, weathering generated more high-affinity adsorption sites, namely, interlayer sites (ITs) and frayed edge sites (FESs), to different extents, and then facilitated the uptake of Cs+ at FESs and ITs on micaceous minerals in a poorly exchangeable state. Cs+ stabilized the micaceous mineral structure once it was absorbed within collapsed interlayers by hindering cation exchange and preventing further destruction during weathering. As important weathering factors, high temperature and Ca2+ content promoted the binding of Cs+ in the interlayers of biotite and phlogopite by enhancing interlayer cation exchange. These findings are beneficial for a better understanding of the environmental behaviors of RCs in the hydrosphere and pedosphere.


Asunto(s)
Radioisótopos de Cesio , Cesio , Adsorción , Cesio/análisis , Minerales/química , Silicatos de Aluminio
11.
Emerg Microbes Infect ; 12(1): e2169198, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36655944

RESUMEN

During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , Reinfección , SARS-CoV-2 , Estudios Retrospectivos , Hospitalización
12.
Chemosphere ; 311(Pt 2): 137136, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343728

RESUMEN

Clarifying the reaction process and specific mechanism between variable-valence elements and oxidized carbon nanoparticles is essential to evaluate the environmental impact of carbon nanomaterials. In this study, the photocatalytic reduction of Cr(VI) on oxidized carbon nanotubes (OCNTs), oxidized graphene ribbons (OGRs), and graphene oxide sheets (GOs) was explored by batch experiments and spectroscopic analyses. The reaction efficiencies strongly depended on the number of oxygenated groups in the oxidized carbon nanoparticles. The abundant oxygenated groups enabled the GOs to exhibit the highest photocatalytic activity, followed by the OGRs and OCNTs. As a result, the photoreduction efficiency of Cr(VI) reached 96% for GOs, whereas those of OGRs and OCNTs were only 40% and 13%, respectively. In addition, different types of oxygenated groups exhibited various activities based on molecular model tests, following the sequence carboxylic > hydroxyl > carbonyl > ether > aldehyde > edge. Based on the underlying relationship between the oxygenated groups, topological structures, and mechanical strain in the carbon nanoparticles, we speculate that mechanical strain plays a critical role in the formation of oxygenated groups, thereby regulating their photocatalytic activities. The findings in this work provide novel insights into the roles of oxygenated groups and the mechanical strain of carbon nanoparticles in their environmental behavior.

13.
Sci Total Environ ; 852: 158215, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36028020

RESUMEN

BACKGROUND: Long-term exposure to particulate air pollutants can lead to an increase in mortality of hemodialysis patients, but evidence of mortality risk with short-term exposure to ambient particulate matter is lacking. This study aimed to estimate the association of short-term exposure to ambient particulate matter across a wide range of concentrations with hemodialysis patients mortality. METHODS: We performed a time-stratified case-crossover study to estimate the association between short-term exposures to PM2.5 and PM10 and mortality of hemodialysis patients. The study included 18,114 hemodialysis death case from 279 hospitals in 41 cities since 2013. Daily particulate matter exposures were calculated by the inverse distance-weighted model based on each case's dialysis center address. Conditional logistic regression were implemented to quantify exposure-response associations. The sensitivity analysis mainly explored the lag effect of particulate matter. RESULTS: During the study period, there were 18,114 case days and 61,726 control days. Of all case and control days, average PM2.5 and PM10 levels were 43.98 µg/m3 and 70.86 µg/m3, respectively. Each short-term increase of 10 µg/m3 in PM2.5 and PM10 were statistically significantly associated with a relative increase of 1.07 % (95 % confidence interval [CI]: 0.99 % - 1.15 %) and 0.89 % (95 % CI: 0.84 % - 0.94 %) in daily mortality rate of hemodialysis patients, respectively. There was no evidence of a threshold in the exposure-response relationship. The mean of daily exposure on the same day of death and one-day prior (Lag 01 Day) was the most plausible exposure time window. CONCLUSIONS: This study confirms that short-term exposure to particulate matter leads to increased mortality in hemodialysis patients. Policy makers and public health practices have a clear and urgent opportunity to pass air quality control policies that care for hemodialysis populations and incorporate air quality into the daily medical management of hemodialysis patients.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Estudios de Casos y Controles , Estudios Cruzados , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , China/epidemiología , Diálisis Renal
14.
Nutrients ; 14(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745173

RESUMEN

Although folate and vitamin B12 status have long been implicated in cognitive function, there is no consensus on the threshold of folate and vitamin B12 for assessing their impacts on cognition. The goal of this study was to detail the association between folate and vitamin B12 with cognitive performance. We analyzed cross-sectional data of older adults (≥60 y; n = 2204) from the NHANES (National Health and Nutrition Examination Surveys) cohort from 2011-2014. The restricted cubic spline model was used for describing the associations between serum total folate, RBC folate, 5-methyltetrahydrofolate, and vitamin B12 and the Consortium to Establish a Registry for Alzheimer's Disease Word Learning (CERAD-WL) and Delayed Recall (CERAD-DR) tests, the Animal Fluency (AF) test, and the Digit Symbol Substitution Test (DSST), respectively. Older adults with a different folate and vitamin B12 status were clustered by artificial intelligence unsupervised learning. The statistically significant non-linear relationships between the markers of folate or vitamin B12 status and cognitive function were found after adjustments for potential confounders. Inverse U-shaped associations between folate/vitamin B12 status and cognitive function were observed, and the estimated breakpoint was described. No statistically significant interaction between vitamin B12 and folate status on cognitive function was observed in the current models. In addition, based on the biochemical examination of these four markers, older adults could be assigned into three clusters representing relatively low, medium, and high folate/vitamin B12 status with significantly different scores on the CERAD-DR and DSST. Low or high folate and vitamin B12 status affected selective domains of cognition, and was associated with suboptimal cognitive test outcomes.


Asunto(s)
Ácido Fólico , Vitamina B 12 , Anciano , Inteligencia Artificial , Cognición , Estudios Transversales , Humanos , Encuestas Nutricionales
15.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35659605

RESUMEN

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Asunto(s)
COVID-19 , Vacunas Virales , Adenoviridae/genética , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Ratones , Ratones Endogámicos C57BL , Pan troglodytes , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas Sintéticas
16.
Biosaf Health ; 4(3): 154-160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35528630

RESUMEN

Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified during late 2019, the sustained spread of this pathogen within the human population has caused worldwide disruption with staggering infection rates and death tolls. Due to the accumulation of mutations in SARS-CoV-2, the virus has evolved into many variants, five of which have been listed as variants of concern VOCs by the World Health Organization (WHO). Multiple animal models of SARS-CoV-2 have been developed to evaluate vaccines and drugs and to assess the pathogenicity, transmissibility and antiviral measures of these VOCs. Here, we review the cutting-edge research based on mouse, hamster, ferret and non-human primate models for evaluating SARS-CoV-2 with a focus on the Omicron variant, and highlight the importance of updating vaccines in a timely manner in order to mitigate the negative effects of SARS-CoV-2 infections in the human population.

17.
Molecules ; 27(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35335223

RESUMEN

The environmental behaviors of uranium closely depend on its interaction with natural minerals. Ferrihydrite widely distributed in nature is considered as one main natural media that is able to change the geochemical behaviors of various elements. However, the semiconductor properties of ferrihydrite and its impacts on the environmental fate of elements are sometimes ignored. The present study systematically clarified the photocatalysis of U(VI) on ferrihydrite under anaerobic and aerobic conditions, respectively. Ferrihydrite showed excellent photoelectric response. Under anaerobic conditions, U(VI) was converted to U(IV) by light-irradiated ferrihydrite, in the form of UO2+x (x < 0.25), where •O2− was the dominant reactive reductive species. At pH 5.0, ~50% of U(VI) was removed after light irradiation for 2 h, while 100% U(VI) was eliminated at pH 6.0. The presence of methanol accelerated the reduction of U(VI). Under aerobic conditions, the light illumination on ferrihydrite also led to an obvious but slower removal of U(VI). The removal of U(VI) increased from ~25% to 70% as the pH increased from 5.0 to 6.0. The generation of H2O2 under aerobic conditions led to the formation of UO4•xH2O precipitates on ferrihydrite. Therefore, it is proved that light irradiation on ferrihydrite significantly changed the species of U(VI) and promoted the removal of uranium both under anaerobic and aerobic conditions.


Asunto(s)
Peróxido de Hidrógeno , Uranio , Medios de Cultivo , Compuestos Férricos , Iluminación
18.
J Cell Mol Med ; 26(8): 2312-2321, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212166

RESUMEN

The zoonotic Lyme neuroborreliosis (LNB) disease is caused by Borrelia burgdorferi, with wide distribution, rapid dissemination and high disability rate. However, the molecular mechanism underlying B. burgdorferi mediated neuroborreliosis remains largely unknown. Here, the frontal cortex from rhesus brains was incubated with B. burgdorferi, and proteomics profiling was evaluated by isobaric tag for relative and absolute quantitation. Proteins were identified and quantified, and differentially expressed proteins (DEPs) were isolated by comparing co-cultured samples and control samples. A total of 43, 164 and 368 DEPs were significantly altered after 6, 12 and 24 h treatment with B. burgdorferi respectively. Gene ontology and KEGG pathway analyses revealed that chemokine biological process was significantly enriched. Two genes in chemokine pathway including GRB2 and ROCK2 were significantly up-regulated after B. burgdorferi co-culturing. By in vitro assay, we confirmed that the expression of GRB2 and ROCK2 was increased after B. burgdorferi infection. In conclusion, our study revealed the involvement of chemokine pathway in the pathogenesis of LNB. GRB2 and ROCK2 may be novel biomarkers and therapeutic targets for LNB.


Asunto(s)
Borrelia burgdorferi , Proteína Adaptadora GRB2/metabolismo , Neuroborreliosis de Lyme , Quinasas Asociadas a rho/metabolismo , Animales , Borrelia burgdorferi/genética , Quimiocinas , Macaca mulatta , Proteómica
19.
J Chem Inf Model ; 62(21): 5289-5304, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34648290

RESUMEN

The accumulation of adenosine in the tumor microenvironment mediates immunosuppression and promotes tumor growth and proliferation. Intervention of the adenosine pathway is an important direction of antitumor immunity research. CD39 is an important ecto-nucleotidases for adenosine generation, therefore targeting the CD39-adenosine pathway is an emerging immune checkpoint for anticancer treatment. However, currently no CD39 inhibitor has been approved by the U.S. Food and Drug Administration. The development of CD39 drugs is urgent for clinical application. In this study, we combined homology modeling, virtual screening, and in vitro enzymatic activity to characterize the structural features of the CD39 protein and identify a triazinoindole-based compound as a CD39 inhibitor. The identified inhibitor and one of its analogues could effectively prevent the enzymatic activity of CD39 with IC50 values of 27.42 ± 5.52 and 79.24 ± 12.21 µM, respectively. At the same time, the inhibitor significantly inhibited the adenosine monophosphate production in colorectal cancer cell lines (HT29 and MC38) and thereafter prevented cell proliferation. Molecular docking studies, mutagenesis, and microscale thermophoresis indicated that residues such as R85 could be the main contributor in binding triazinoindole compounds. The binding mode can potentially be utilized for hit-to-lead optimization, and the identified inhibitor can be further tested for its anticancer activity in vivo or may serve as a chemical agent to study CD39-related functions.


Asunto(s)
Antígenos CD , Apirasa , Apirasa/metabolismo , Simulación del Acoplamiento Molecular , Antígenos CD/metabolismo , Adenosina/metabolismo , Pruebas de Enzimas
20.
Methods Mol Biol ; 2410: 193-208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34914048

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health emergency. Several vaccine candidates have been developed in response to the COVID-19 pandemic. One approach is to construct live-recombinant viruses expressing the SARS-CoV-2 spike protein (S) as vaccine candidates. The vesicular stomatitis virus (VSV) vector is a mature vaccine platform which was successfully developed as a vaccine against Ebola virus (EBOV), leading to its licensure by the Food and Drug Administration (FDA) in December 2019. Based on this work, we developed two live, replication-competent VSV-vectored vaccines against SARS-CoV-2: (1) a VSV expressing the S protein of SARS-CoV-2 and (2) a bivalent VSV expressing the S protein of SARS-CoV-2 and the glycoprotein (GP) of EBOV. This protocol describes the methodologies for the design, cloning, rescue, and preparation of these recombinant VSV vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas Sintéticas , COVID-19/prevención & control , Ebolavirus/inmunología , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Desarrollo de Vacunas , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...