Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(1): 20-32.e6, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38096824

RESUMEN

Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progenitors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair.


Asunto(s)
Glándulas Ecrinas , Epidermis , Humanos , Ratones , Animales , Epidermis/metabolismo , Glándulas Ecrinas/metabolismo , Piel , Folículo Piloso/metabolismo , Regulación de la Expresión Génica , Mamíferos
2.
PLoS Genet ; 19(2): e1010614, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745673

RESUMEN

Enhancers are context-specific regulators of expression that drive biological complexity and variation through the redeployment of conserved genes. An example of this is the enhancer-mediated control of Engrailed 1 (EN1), a pleiotropic gene whose expression is required for the formation of mammalian eccrine sweat glands. We previously identified the En1 candidate enhancer (ECE) 18 cis-regulatory element that has been highly and repeatedly derived on the human lineage to potentiate ectodermal EN1 and induce our species' uniquely high eccrine gland density. Intriguingly, ECE18 quantitative activity is negligible outside of primates and ECE18 is not required for En1 regulation and eccrine gland formation in mice, raising the possibility that distinct enhancers have evolved to modulate the same trait. Here we report the identification of the ECE20 enhancer and show it has conserved functionality in mouse and human developing skin ectoderm. Unlike ECE18, knock-out of ECE20 in mice reduces ectodermal En1 and eccrine gland number. Notably, we find ECE20, but not ECE18, is also required for En1 expression in the embryonic mouse brain, demonstrating that ECE20 is a pleiotropic En1 enhancer. Finally, that ECE18 deletion does not potentiate the eccrine phenotype of ECE20 knock-out mice supports the secondary incorporation of ECE18 into the regulation of this trait in primates. Our findings reveal that the mammalian En1 regulatory machinery diversified to incorporate both shared and lineage-restricted enhancers to regulate the same phenotype, and also have implications for understanding the forces that shape the robustness and evolvability of developmental traits.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio , Ratones , Animales , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Ratones Noqueados , Fenotipo , Glándulas Sudoríparas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850016

RESUMEN

Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans' high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 (EN1) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Proteínas de Homeodominio/genética , Animales , Evolución Biológica , Glándulas Ecrinas/metabolismo , Glándulas Ecrinas/fisiología , Ectodermo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Secuencias Reguladoras de Ácidos Nucleicos/genética , Piel/metabolismo , Sudoración/genética , Sudoración/fisiología , Factores de Transcripción/genética
4.
J Anat ; 237(2): 367-378, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32266720

RESUMEN

Dentine- and enamel-forming cells secrete matrix in consistent rhythmic phases, resulting in the formation of successive microscopic growth lines inside tooth crowns and roots. Experimental studies of various mammals have proven that these lines are laid down in subdaily, daily (circadian), and multidaily rhythms, but it is less clear how these rhythms are initiated and maintained. In 2001, researchers reported that lesioning the so-called master biological clock, the suprachiasmatic nucleus (SCN), halted daily line formation in rat dentine, whereas subdaily lines persisted. More recently, a key clock gene (Bmal1) expressed in the SCN in a circadian manner was also found to be active in dentine- and enamel- secretory cells. To probe these potential neurological and local mechanisms for the production of rhythmic lines in teeth, we reexamined the role of the SCN in growth line formation in Wistar rats and investigated the presence of daily lines in Bmal1 knockout mice (Bmal1-/- ). In contrast to the results of the 2001 study, we found that both daily and subdaily growth lines persisted in rat dentine after complete or partial SCN lesion in the majority of individuals. In mice, after transfer into constant darkness, daily rhythms continued to manifest as incremental lines in the dentine of each Bmal1 genotype (wild-type, Bmal+/- , and Bmal1-/- ). These results affirm that the manifestation of biological rhythms in teeth is a robust phenomenon, imply a more autonomous role of local biological clocks in tooth growth than previously suggested, and underscore the need further to elucidate tissue-specific circadian biology and its role in incremental line formation. Investigations of this nature will strengthen an invaluable system for determining growth rates and calendar ages from mammalian hard tissues, as well as documenting the early lives of fossil hominins and other primates.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Dentina/crecimiento & desarrollo , Factores de Transcripción ARNTL/genética , Animales , Ratones , Ratones Noqueados , Ratas , Ratas Wistar
5.
Elife ; 82019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31535975

RESUMEN

Changes in cell proliferation define transitions from tissue growth to physiological homeostasis. In tendons, a highly organized extracellular matrix undergoes significant postnatal expansion to drive growth, but once formed, it appears to undergo little turnover. However, tendon cell activity during growth and homeostatic maintenance is less well defined. Using complementary methods of genetic H2B-GFP pulse-chase labeling and BrdU incorporation in mice, we show significant postnatal tendon cell proliferation, correlating with longitudinal Achilles tendon growth. Around day 21, there is a transition in cell turnover with a significant decline in proliferation. After this time, we find low amounts of homeostatic tendon cell proliferation from 3 to 20 months. These results demonstrate that tendons harbor significant postnatal mitotic activity, and limited, but detectable activity in adult and aged stages. It also points towards the possibility that the adult tendon harbors resident tendon progenitor populations, which would have important therapeutic implications.


Asunto(s)
Tendón Calcáneo/crecimiento & desarrollo , Ciclo Celular/genética , Proliferación Celular/fisiología , Homeostasis/genética , Tendón Calcáneo/fisiología , Animales , Matriz Extracelular/genética , Matriz Extracelular/fisiología , Ratones , Células Madre/metabolismo
6.
PeerJ ; 6: e4664, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29707433

RESUMEN

BACKGROUND: Mechanistic understanding of tendon molecular and cellular biology is crucial toward furthering our abilities to design new therapies for tendon and ligament injuries and disease. Recent transcriptomic and epigenomic studies in the field have harnessed the power of mouse genetics to reveal new insights into tendon biology. However, many mouse studies pool tendon tissues or use amplification methods to perform RNA analysis, which can significantly increase the experimental costs and limit the ability to detect changes in expression of low copy transcripts. METHODS: Single Achilles tendons were harvested from uninjured, contralateral injured, and wild type mice between three and five months of age, and RNA was extracted. RNA Integrity Number (RIN) and concentration were determined, and RT-qPCR gene expression analysis was performed. RESULTS: After testing several RNA extraction approaches on single adult mouse Achilles tendons, we developed a protocol that was successful at obtaining high RIN and sufficient concentrations suitable for RNA analysis. We found that the RNA quality was sensitive to the time between tendon harvest and homogenization, and the RNA quality and concentration was dependent on the duration of homogenization. Using this method, we demonstrate that analysis of Scx gene expression in single mouse tendons reduces the biological variation caused by pooling tendons from multiple mice. We also show successful use of this approach to analyze Sox9 and Col1a2 gene expression changes in injured compared with uninjured control tendons. DISCUSSION: Our work presents a robust, cost-effective, and straightforward method to extract high quality RNA from a single adult mouse Achilles tendon at sufficient amounts for RT-qPCR as well as RNA-seq. We show this can reduce variation and decrease the overall costs associated with experiments. This approach can also be applied to other skeletal tissues, as well as precious human samples.

7.
J Hum Evol ; 112: 93-104, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28917702

RESUMEN

Tracks can provide unique, direct records of behaviors of fossil organisms moving across their landscapes millions of years ago. While track discoveries have been rare in the human fossil record, over the last decade our team has uncovered multiple sediment surfaces within the Okote Member of the Koobi Fora Formation near Ileret, Kenya that contain large assemblages of ∼1.5 Ma fossil hominin tracks. Here, we provide detailed information on the context and nature of each of these discoveries, and we outline the specific data that are preserved on the Ileret hominin track surfaces. We analyze previously unpublished data to refine and expand upon earlier hypotheses regarding implications for hominin anatomy and social behavior. While each of the track surfaces discovered at Ileret preserves a different amount of data that must be handled in particular ways, general patterns are evident. Overall, the analyses presented here support earlier interpretations of the ∼1.5 Ma Ileret track assemblages, providing further evidence of large, human-like body sizes and possibly evidence of a group composition that could support the emergence of certain human-like patterns of social behavior. These data, used in concert with other forms of paleontological and archaeological evidence that are deposited on different temporal scales, offer unique windows through which we can broaden our understanding of the paleobiology of hominins living in East Africa at ∼1.5 Ma.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Hominidae/fisiología , Locomoción , Conducta Social , Animales , Arqueología , Evolución Biológica , Kenia , Paleontología
8.
Sci Rep ; 6: 28766, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27403790

RESUMEN

Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6-7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus.


Asunto(s)
Pie/fisiología , Fósiles , Hominidae/fisiología , Locomoción/fisiología , Conducta Social , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Tamaño Corporal/fisiología , Pie/anatomía & histología , Marcha/fisiología , Hominidae/anatomía & histología , Humanos , Caminata/fisiología
9.
Am J Phys Anthropol ; 161(3): 381-397, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27377428

RESUMEN

OBJECTIVES: Determining the functional significance of pubic rami is important for reconstructing locomotor behavior of fossil species. The slow loris pelvis, characterized by long pubic rami, is unusual among primates. Long pubic rami may be related to increasing the moment arm of the abdominal musculature during ventroflexion after the termination of hindlimb suspension, which is a common component of slow arboreal quadrupedalism (AQ). Some extant xenarthran species are also slow AQ taxa, and provide an ideal group to test hypotheses of morphologically convergent adaptations to slow AQ. MATERIALS AND METHODS: A model relating abdominal moment arms to pubic morphology is tested in three genera of slow-moving xenarthrans (Bradypus, Choloepus, and Cyclopes) and two species of slow loris (Nycticebus coucang and Perodicticus potto), using a comparative sample of 37 species of primates and xenarthrans. Phylogenetic analyses of variance and regression were performed on pubic dimensions (superior and inferior pubic ramus length, pubic symphysis length). RESULTS: As a locomotor group, slow-moving xenarthrans and lorises share superior pubic rami that are longer than all other locomotor groups; at the species level, there is some overlap among slow AQ and non-slow-AQ taxa. Inferior pubic ramus and pubic symphysis lengths also differ according to locomotor category, but multiple comparisons among locomotor groups are non-significant. DISCUSSION: These results support the hypothesis that superior pubic ramus length is functionally related to slow, suspensory locomotion by increasing the leverage of the ventral abdominal musculature, and demonstrates morphological convergence among two phylogenetically distant groups of mammals that have evolved adaptations for slow, suspensory locomotion.


Asunto(s)
Locomoción/fisiología , Lorisidae/anatomía & histología , Lorisidae/fisiología , Hueso Púbico/anatomía & histología , Xenarthra/anatomía & histología , Xenarthra/fisiología , Análisis de Varianza , Animales , Antropología Física , Femenino , Fósiles , Masculino , Filogenia , Hueso Púbico/fisiología
10.
J Hum Evol ; 90: 38-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26767958

RESUMEN

Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the biomechanical patterns reflected by fossil hominin footprints by demonstrating the statistically significant effects of specific kinematic variables on patterns of variation in footprint topography.


Asunto(s)
Pie/anatomía & histología , Pie/fisiología , Fósiles , Hominidae/fisiología , Caminata/fisiología , Adolescente , Animales , Antropología Física , Fenómenos Biomecánicos/fisiología , Niño , Preescolar , Femenino , Humanos , Kenia , Masculino , Análisis de Componente Principal
11.
Am J Hum Biol ; 28(4): 514-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26707057

RESUMEN

OBJECTIVES: To study the effects of urbanization on physical fitness (PF), we compare PF between urban and rural children from western Kenya. We hypothesize that active rural children are stronger, more flexible, and have greater endurance, and that PF differences are predictive of endurance running performance. METHODS: We recruited an age-matched, cross-sectional sample of participants (55 males, 60 females; 6-17 years) from schools near Eldoret, Kenya. PF and anthropometrics were assessed using the FITNESSGRAM®. General linear mixed models (GLMM) and path analyses tested for age, sex, and activity group differences in PF, as well as the effects of PF variables on mile run time. RESULTS: On average, urban participants had greater body mass (36.8 ± 15.9 vs. 31.9 ± 10.9 kg) but were not taller than rural participants (1.4 ± 0.2 vs. 1.4 ± 0.2 cm). Greater urban body mass appears driven by higher body fat (28.2 ± 9.4 vs. 16.8 ± 4.4%), which increased with age in urban but not rural participants. GLMM analyses showed age effects on strength variables (P<0.05) and sex differences in hip flexibility, sit-ups, and mile run (P<0.05). There were few differences in PF between groups except rural participants had stronger back muscles (18.2 ± 4.5 vs. 14.18 ± 4.3 cm) and faster mile times (6.3 ± 0.7 vs. 7.9 ± 2.0 min). Body composition and abdominal strength were predictive of mile time (P < 0.06), but the path analysis revealed a network of interacting direct and indirect effects that influenced endurance performance. CONCLUSIONS: Although differences in endurance and body composition are marked between urban and rural groups, strength and flexibility are not always correlated with overall activity levels. Am. J. Hum. Biol. 28:514-523, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Composición Corporal , Fuerza Muscular , Aptitud Física , Rango del Movimiento Articular , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Kenia , Masculino , Población Rural , Población Urbana
12.
J Hum Evol ; 65(1): 21-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23725794

RESUMEN

Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography. Thirty-eight habitually unshod and minimally shod Daasanach individuals (19 male, 19 female) walked across a pressure pad and produced footprints in sediment directly excavated from the geological layer that preserves 1.5 Ma fossil footprints at Ileret, Kenya. Calibrated pressure data were collected and three-dimensional models of all footprints were produced using photogrammetry. We found significant correlations (Spearman's rank, p < 0.0001) between measurements of plantar pressure distribution and relative footprint depths at ten anatomical regions across the foot. Furthermore, plantar pressure distributions followed a pattern similar to footprint topography, with areas of higher pressure tending to leave deeper impressions. This differs from the results of experimental studies performed in different types of sediment, supporting the hypothesis that sediment type influences the relationship between plantar pressure and footprint topography. Our results also lend support to previous interpretations that the shapes of the Ileret footprints preserve evidence of a medial transfer of plantar pressure during late stance phase, as seen in modern humans. However, the weakness of the correlations indicates that much of the variation in relative depths within footprints is not explained by pressure distributions under the foot when walking on firm ground, using the methods applied here. This warrants caution when interpreting the unique foot anatomies and foot functions of extinct hominins evidenced by their footprint structures. Further research is necessary to clarify how anatomical, functional, and sedimentary variables influence footprint formation and how each can be inferred from footprint morphology.


Asunto(s)
Pie/fisiología , Fósiles , Caminata/fisiología , Adulto , Antropología Física , Fenómenos Biomecánicos , Femenino , Pie/anatomía & histología , Sedimentos Geológicos , Humanos , Masculino , Presión , Estadísticas no Paramétricas
13.
J Hum Evol ; 64(6): 556-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23522822

RESUMEN

The early Pleistocene marks a period of major transition in hominin body form, including increases in body mass and stature relative to earlier hominins. However, because complete postcranial fossils with reliable taxonomic attributions are rare, efforts to estimate hominin mass and stature are complicated by the frequent albeit necessary use of isolated, and often fragmentary, skeletal elements. The recent discovery of 1.52 million year old hominin footprints from multiple horizons in Ileret, Kenya, provides new data on the complete foot size of early Pleistocene hominins as well as stride lengths and other characteristics of their gaits. This study reports the results of controlled experiments with habitually unshod Daasanach adults from Ileret to examine the relationships between stride length and speed, and also those between footprint size, body mass, and stature. Based on significant relationships among these variables, we estimate travel speeds ranging between 0.45 m/s and 2.2 m/s from the fossil hominin footprint trails at Ileret. The fossil footprints of seven individuals show evidence of heavy (mean = 50.0 kg; range: 41.5-60.3 kg) and tall individuals (mean = 169.5 cm; range: 152.6-185.8 cm), suggesting that these prints were most likely made by Homo erectus and/or male Paranthropus boisei. The large sizes of these footprints provide strong evidence that hominin body size increased during the early Pleistocene.


Asunto(s)
Tamaño Corporal/fisiología , Pie/anatomía & histología , Fósiles , Marcha/fisiología , Hominidae/anatomía & histología , Adulto , Animales , Femenino , Pie/fisiología , Hominidae/fisiología , Humanos , Kenia , Masculino , Análisis de Regresión , Grabación en Video
14.
PLoS One ; 8(1): e52548, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326341

RESUMEN

Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns.


Asunto(s)
Pie/fisiología , Carrera/fisiología , Zapatos , Grabación de Cinta de Video/métodos , Fenómenos Biomecánicos , Etnicidad , Femenino , Antepié Humano/fisiología , Humanos , Kenia , Cinética , Masculino , Modelos Biológicos , Grabación de Cinta de Video/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...