Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(2): 225-232, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606451

RESUMEN

The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

2.
Sci Rep ; 11(1): 784, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436808

RESUMEN

Nitrification is the rate limiting step in the nitrogen removal processes since nitrifiers have high oxygen demand, but poorly compete with aerobic heterotrophs. In a laboratory-scaled system, we investigated a process of ammonium oxidation under ferric-iron reducing condition (feammox) in the presence of organic carbon using influents with high NH4+ and COD contents, and ferrihydrite as the only electron acceptor. Batch incubations testing influents with different NH4+ and COD concentrations revealed that the [COD]/[NH4+] ratio of 1.4 and the influent redox potential ranging from - 20 to + 20 mV led to the highest removal efficiencies, i.e. 98.3% for NH4+ and 58.8% for COD. N2 was detected as the only product of NH4+ conversion, whereas NO2- and NO3- were not detected. While operating continuously with influent having a [COD]/[NH4+] ratio of 1.4, the system efficiently removed NH4+ (> 91%) and COD (> 54%) within 6 day retention time. Fluorescence in situ hybridization analyses using Cy3-labeled 16S rRNA oligonucleotide probes revealed that gamma-proteobacteria dominated in the microbial community attaching to the matrix bed of the system. The iron-reduction dependent NH4+ and COD co-removal with a thorough conversion of NH4+ to N2 demonstrated in this study would be a novel approach for nitrogen treatment.

3.
J Microbiol Biotechnol ; 30(7): 1005-1012, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32160701

RESUMEN

Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/ l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)- like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Sulfatos/metabolismo , Ácidos , Bacterias/clasificación , Biodegradación Ambiental , Desulfovibrio , Ecosistema , Microbiología Ambiental , Concentración de Iones de Hidrógeno , Metales Pesados , Minería , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
4.
Microb Biotechnol ; 8(3): 579-89, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712332

RESUMEN

In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm(-2) of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe(2+) as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm(-2) of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples.


Asunto(s)
Procesos Autotróficos , Fuentes de Energía Bioeléctrica , Electricidad , Electrodos/microbiología , Compuestos Ferrosos/metabolismo , Pseudomonadaceae/crecimiento & desarrollo , Pseudomonadaceae/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...