Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(50): 56280-56289, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484234

RESUMEN

In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.

2.
J Mater Chem B ; 9(40): 8530, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34622917

RESUMEN

Correction for 'Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level' by Xiaohui Ju et al., J. Mater. Chem. B, 2021, 9, 7386-7400, DOI: 10.1039/D1TB00706H.

3.
J Mater Chem B ; 9(36): 7386-7400, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551046

RESUMEN

Cerium oxide nanoparticles (CeNPs) possess multiple redox enzyme mimetic activities in scavenging reactive oxygen species (ROS) as a potential biomedicine. These enzymatic activities of CeNPs are closely related to their surface oxidation state. Here we have reported a synthetic method to modify CeNPs' surface oxidation state by changing the conformation of the poly(acrylic acid) (PAA) polymers adsorbed onto the CeNP surface. The synthesized PAA-CeNPs exhibited the same core size, morphology, crystal structure, and colloidal stability, with the only variation being their surface oxidation state (Ce3+ percentage). The modification mechanism can be attributed to the polymers chemisorbed onto the metal oxide surface forming a metal complexation structure. Such adsorption further modified CeNPs' surface oxidation state in a temperature-dependent manner. The series of PAA-CeNPs exhibited multiple redox enzyme mimetic activities (superoxide dismutase, catalase, peroxidase, and oxidase) directly related to their surface oxidation state. In vitro experiments showed no cytotoxic effect of these PAA-CeNPs on the osteoblastic cell line SAOS-2 at high loadings. Microscopic images confirmed the internalization of PAA-CeNPs in the cells. All tested PAA-CeNPs can reduce the basal and hydrogen peroxide-induced intracellular ROS level in the cells, indicating their effective intracellular ROS scavenging effect. However, we did not observe a positive correlation between the CeNP surface oxidation state and their capacities to reduce the intracellular ROS levels. We propose that CeNPs can maintain a dynamic state of Ce3+/Ce4+ during their catalytic activities, exhibiting a non-linear correlation between the CeNP surface oxidation state and their effect on regulating the intracellular ROS level.


Asunto(s)
Resinas Acrílicas/química , Cerio/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/química , Catálisis , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Oxidación-Reducción , Tamaño de la Partícula , Especies Reactivas de Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA