Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; 16(4): 472-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26748820

RESUMEN

The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.


Asunto(s)
Materiales Biocompatibles/síntesis química , Regeneración Tisular Dirigida/métodos , Traumatismos de los Nervios Periféricos/terapia , Nervios Periféricos/efectos de los fármacos , Polímeros/síntesis química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Quitosano/química , Quitosano/farmacología , Colágeno/química , Colágeno/farmacología , Humanos , Factores de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/cirugía , Nervios Periféricos/irrigación sanguínea , Nervios Periféricos/patología , Nervios Periféricos/cirugía , Polímeros/farmacología , Medicina Regenerativa , Andamios del Tejido , Trasplante de Tejidos/métodos , Trasplante Autólogo , Trasplante Homólogo
2.
PLoS One ; 9(10): e109770, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25313579

RESUMEN

With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF) during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs) were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the 'bands of Bungner' found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit.


Asunto(s)
Nanofibras/química , Regeneración Nerviosa , Seda/química , Animales , Bombyx/química , Adhesión Celular , Diferenciación Celular/efectos de los fármacos , Factor Neurotrófico Ciliar/química , Factor Neurotrófico Ciliar/farmacología , Técnicas Electroquímicas , Ganglios Espinales/citología , Conos de Crecimiento , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Ratas , Andamios del Tejido/química
3.
ACS Appl Mater Interfaces ; 6(19): 16817-26, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25203247

RESUMEN

Concentration gradients of guidance molecules influence cell behavior and growth in biological tissues and are therefore of interest for the design of biomedical scaffolds for regenerative medicine. We developed an electrospining method to generate a dual-gradient of bioactive molecules and fiber density along electrospun nanofibers without any post spinning treatment. Functionalization with fluorescent molecules demonstrated the efficiency of the method to generate a discontinuous concentration gradient along the aligned fibers. As a proof of concept for tissue engineering, the silk nanofibers were functionalized with increasing concentrations of nerve growth factor (NGF) and the biological activity was assessed and quantified with rat dorsal root ganglion (DRG) neurons cultures. Protein assays showed the absence of passive release of NGF from the functionalized fibers. The results demonstrated that the NGF concentration gradient led to an oriented and increased growth of DRG neurons (417.6 ± 55.7 µm) compared to a single uniform NGF concentration (264.5 ± 37.6 µm). The easy-to-use electrospinning technique combined with the multiple molecules that can be used for fiber functionalization makes this technique versatile for a broad range of applications from biosensors to regenerative medicine.


Asunto(s)
Nanofibras/química , Factor de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/efectos de los fármacos , Seda/farmacología , Ingeniería de Tejidos/métodos , Animales , Axones/efectos de los fármacos , Bombyx , Forma de la Célula/efectos de los fármacos , Fluorescencia , Masculino , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA