Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Physiol Funct Imaging ; 43(5): 365-372, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37190935

RESUMEN

The pupillary light reflex (PLR) is a method for measuring dynamic responses within the autonomic nervous system, and would have potential value as a point-of-care test in a psychiatry clinic if reproducible results could be obtained in a short period of time. We collected PLR from adult community volunteers and depressed outpatients with the purpose of demonstrating (1) that valid data could be obtained >90% of the time from both the community volunteers and the patients, and (2) that reproducible results could be obtained with repeated measurement over short periods of time. Valid data were captured for 90.3% of 76 participants, allowing for two attempts of the PLR per participant. Success rates were similar for depressed patients and community volunteers. Eighteen of these 76 participants provided repeated paired measurements after 5 and 10 min of dark adaptation, producing high correlations for maximum constriction velocity (MCV) between assay 1 and 2 (Pearson's r = 0.71, p < 0.001), but there was a significant 8% increase in velocity for MCV between assay 1 and 2 (∆ = 0.34 ± 0.59 mm/s, p < 0.05). In contrast, PLR measurements were stable when tested in a separate cohort of 21 additional participants at 10 and 15 min of dark adaptation with an MCV Pearson's correlation of r = 0.84, p < 0.001, with a nonsignificant 1% difference between the two time points. These findings indicate an acceptable rate of collecting valid and reproducible PLR data when contrasting two measurements of PLR after 10 or 15 min of dark adaptation in depressed and suicidal patients.


Asunto(s)
Luz , Reflejo Pupilar , Adulto , Humanos , Reflejo Pupilar/fisiología , Reproducibilidad de los Resultados , Voluntarios , Pacientes Ambulatorios
2.
West J Emerg Med ; 22(5): 1045-1050, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34546879

RESUMEN

INTRODUCTION: The coronavirus 2019 (COVID-19) pandemic has reinforced the importance of facial protection against droplet transmission of diseases. Healthcare workers wear personal protection equipment (PPE), including face shields and masks. Plastic face shields may have advantages over regular medical masks. Although many designs of face shields exist, there is a paucity of evidence regarding the efficacy of shield designs against droplet transmissions. There is even less published evidence comparing various face shields. Due to the urgency of the pandemic and the health and safety of healthcare workers, we aimed to study the efficacy of various face shields against droplet transmission. METHODS: We simulated droplet transmission via coughing using a heavy-duty chemical spray bottle filled with fluorescein. A standard-adult sized mannequin head was used. The mannequin head wore various face shields and was positioned to face the spray bottle at either a 0°, 45°, or 90° angle. The spray bottle was positioned at and sprayed from 30 centimeters (cm), 60 cm, or 90 cm away from the head. These steps were repeated for all face shields used. Control was a mannequin that wore no PPE. A basic mask was also tested. We collected data for particle count, total area of particle distribution, average particle size, and percentage area covered by particles. We analyzed percent covered by particles using a repeated measures mixed-model regression with Tukey-Kramer pairwise comparison. RESULTS: We used least square means to estimate the percentage area covered by particles. Wearing PPE regardless of the design reduced particle transmission to the mannequin compared to the control. The LCG mask had the lowest square means of 0.06 of all face-shield designs analyzed. Tukey-Kramer pairwise comparison showed that all PPEs had a decrease in particle contamination compared to the control. LCG shield was found to have the least contamination compared to all other masks (P < 0.05). CONCLUSION: Results suggest the importance of wearing a protective covering against droplet transmission. The LCG shield was found to decrease facial contamination by droplets the most of any tested protective equipment.


Asunto(s)
Aerosoles/análisis , COVID-19/prevención & control , Control de Infecciones , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Exposición por Inhalación/prevención & control , Máscaras/estadística & datos numéricos , Equipo de Protección Personal/estadística & datos numéricos , COVID-19/epidemiología , Tos , Atención a la Salud , Humanos , Maniquíes , Máscaras/normas , Tamaño de la Partícula , Equipo de Protección Personal/normas , SARS-CoV-2
3.
J Biol Chem ; 292(35): 14603-14616, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28705933

RESUMEN

Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.


Asunto(s)
Proteínas Arqueales/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Regulación de la Expresión Génica Arqueal , Modelos Moleculares , NADP/metabolismo , Pyrococcus furiosus/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Biocatálisis , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/aislamiento & purificación , Ferredoxinas/química , Eliminación de Gen , Homeostasis , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , NAD/química , NAD/metabolismo , NADP/química , Organismos Modificados Genéticamente , Oxidación-Reducción , Filogenia , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
4.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476773

RESUMEN

Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.


Asunto(s)
Genoma Bacteriano , Inestabilidad Genómica , Bacterias Grampositivas/genética , Lignina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética , Bacterias Grampositivas/metabolismo , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA