Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3734, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702312

RESUMEN

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Asunto(s)
Desmetilación del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN , Células Germinativas , Animales , Humanos , Ratones , Células Germinativas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Masculino , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Femenino , Daño del ADN , Ratones Noqueados , Meiosis/genética , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Epigénesis Genética , Síntesis Translesional de ADN
2.
Nucleic Acids Res ; 51(14): 7269-7287, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37334829

RESUMEN

Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.


Asunto(s)
Microftalmía , Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Cresta Neural/metabolismo , Microftalmía/genética , Eucromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , Cromatina/genética
3.
Am J Hum Genet ; 109(10): 1850-1866, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36150389

RESUMEN

Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons. All six individuals had no or extremely few sperm in the ejaculate, which were not suitable for medically assisted reproduction. Evaluation of testicular tissue revealed an arrest at the stage of round spermatids. Lack of FKBP6 expression in the testis was confirmed by RT-qPCR and immunofluorescence staining. In mice, Fkbp6 is essential for spermatogenesis and has been described as being involved in piRNA biogenesis and formation of the synaptonemal complex (SC). We did not detect FKBP6 as part of the SC in normal human spermatocytes, but small RNA sequencing revealed that loss of FKBP6 severely impacted piRNA levels, supporting a role for FKBP6 in piRNA biogenesis in humans. In contrast to findings in piRNA-pathway mouse models, we did not detect an increase in LINE-1 expression in men with pathogenic FKBP6 variants. Based on our findings, FKBP6 reaches a "strong" level of evidence for being associated with male infertility according to the ClinGen criteria, making it directly applicable for clinical diagnostics. This will improve patient care by providing a causal diagnosis and will help to predict chances for successful surgical sperm retrieval.


Asunto(s)
Azoospermia , Infertilidad Masculina , Animales , Azoospermia/genética , Humanos , Infertilidad Masculina/genética , Elementos de Nucleótido Esparcido Largo , Masculino , Ratones , ARN Interferente Pequeño/metabolismo , Semen , Espermatogénesis/genética , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Testículo/patología
4.
Cells ; 9(6)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585982

RESUMEN

Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Humanos
5.
Neurol Genet ; 5(6): e372, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31872053

RESUMEN

OBJECTIVE: To investigate the distribution of cytosine-guanine dinucleotide (CpG) sites with a variable level of DNA methylation of the D4Z4 macrosatellite element in patients with facioscapulohumeral dystrophy (FSHD). METHODS: By adapting bisulfite modification to deep sequencing, we performed a comprehensive analysis of D4Z4 methylation across D4Z4 repeats and adjacent 4qA sequence in DNA from patients with FSHD1, FSHD2, or mosaicism and controls. RESULTS: Using hierarchical clustering, we identified clusters with different levels of methylation and separated, thereby the different groups of samples (controls, FSHD1, and FSHD2) based on their respective level of methylation. We further show that deep sequencing-based methylation analysis discriminates mosaic cases for which methylation changes have never been evaluated previously. CONCLUSIONS: Altogether, our approach offers a new high throughput tool for estimation of the D4Z4 methylation level in the different subcategories of patients having FSHD. This methodology allows for a comprehensive and discriminative analysis of different regions along the macrosatellite repeat and identification of focal regions or CpG sites differentially methylated in patients with FSHD1 and FSHD2 but also complex cases such as those presenting mosaicism.

6.
Sci Rep ; 9(1): 10327, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316120

RESUMEN

Facio-Scapulo Humeral dystrophy (FSHD) is the third most common myopathy, affecting 1 amongst 10,000 individuals (FSHD1, OMIM #158900). This autosomal dominant pathology is associated in 95% of cases with genetic and epigenetic alterations in the subtelomeric region at the extremity of the long arm of chromosome 4 (q arm). A large proportion of the remaining 5% of cases carry a mutation in the SMCHD1 gene (FSHD2, OMIM #158901). Here, we explored the 3D organization of the 4q35 locus by three-dimensions DNA in situ fluorescent hybridization (3D-FISH) in primary fibroblasts isolated from patients and healthy donors. We found that D4Z4 contractions and/or SMCHD1 mutations impact the spatial organization of the 4q35 region and trigger changes in the expression of different genes. Changes in gene expression were corroborated in muscle biopsies suggesting that the modified chromatin landscape impelled a modulation in the level of expression of a number of genes across the 4q35 locus in FSHD. Using induced pluripotent stem cells (hIPSC), we further examined whether chromatin organization is inherited after reprogramming or acquired during differentiation and showed that folding of the 4q35 region is modified upon differentiation. These results together with previous findings highlight the role of the D4Z4 macrosatellite repeat in the topological organization of chromatin and further indicate that the D4Z4-dependent 3D structure induces transcriptional changes of 4q35 genes expression.


Asunto(s)
Cromosomas Humanos Par 4/genética , Distrofia Muscular Facioescapulohumeral/genética , Adolescente , Adulto , Anciano , Cadherinas/genética , Estudios de Casos y Controles , Cromatina/genética , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Femenino , Fibroblastos/metabolismo , Expresión Génica , Humanos , Imagenología Tridimensional , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Mutación , Adulto Joven
7.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698748

RESUMEN

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Metilación de ADN , Proteínas de Homeodominio/genética , Repeticiones de Microsatélite/genética , Células Cultivadas , Reprogramación Celular/genética , Atresia de las Coanas/genética , Atresia de las Coanas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Microftalmía/genética , Microftalmía/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Nariz/anomalías
8.
Nat Genet ; 49(2): 249-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28067911

RESUMEN

Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.


Asunto(s)
Atresia de las Coanas/genética , Proteínas Cromosómicas no Histona/genética , Microftalmía/genética , Mutación Missense/genética , Nariz/anomalías , Animales , Línea Celular , Preescolar , Epigénesis Genética/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Facioescapulohumeral/genética , Xenopus laevis/genética
9.
BMC Med Genet ; 17(1): 66, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634379

RESUMEN

BACKGROUND: The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. CASE PRESENTATION: We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. CONCLUSION: The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Repeticiones de Microsatélite , Distrofia Muscular Facioescapulohumeral/genética , Mutación , Segregación Cromosómica , Cromosomas Humanos Par 4/genética , Humanos , Linaje
10.
Neurology ; 83(8): 733-42, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25031281

RESUMEN

OBJECTIVE: We investigated the link between DNA hypomethylation and clinical penetrance in facioscapulohumeral dystrophy (FSHD) because hypomethylation is moderate and heterogeneous in patients and could not thus far be correlated with disease presence or severity. METHODS: To investigate the link between clinical signs of FSHD and DNA methylation, we explored 95 cases (37 FSHD1, 29 asymptomatic individuals carrying a shortened D4Z4 array, 9 patients with FSHD2, and 20 controls) by implementing 2 approaches: methylated DNA immunoprecipitation and sodium bisulfite sequencing. RESULTS: Both methods revealed statistically significant differences between asymptomatic carriers or controls and individuals with clinical FSHD, especially in the proximal region of the repeat. Absence of clinical expression in asymptomatic carriers is associated with a level of methylation similar to controls. CONCLUSIONS: We provide a proof of concept that the targeted approaches that we describe could be applied systematically to patient samples in routine diagnosis and suggest that local hypomethylation within D4Z4 might serve as a modifier for clinical expression of FSHD phenotype. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that assays for hypomethylation within the D4Z4 region accurately distinguish patients with FSHD from individuals with D4Z4 contraction without FSHD.


Asunto(s)
Cromosomas Humanos Par 4 , Metilación de ADN/genética , Predisposición Genética a la Enfermedad , Distrofia Muscular Facioescapulohumeral/genética , Adulto , Epigénesis Genética/genética , Femenino , Pruebas Genéticas , Heterocigoto , Humanos , Masculino , Distrofia Muscular Facioescapulohumeral/diagnóstico , Linaje , Penetrancia , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...