Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37174578

RESUMEN

In 2017, aquaculture producers of the Albufeira lagoon, Portugal, reported an invasion of tunicates that was disrupting mussel production, particularly the tunicate Styela plicata (Lesueur, 1823). A totally effective eradication method still does not exist, particularly for S. plicata, and the effects of the eradication treatments on bivalves' performance are also poorly understood. Our study examined the effectiveness of eradication treatments using three laboratory trials and five treatments (air exposure, freshwater immersion, sodium hypochlorite, hypersaline solution and acetic acid) for S. plicata, as well as their effects on survival and growth of blue mussel Mytilus edulis Linnaeus, 1758. While air exposure and freshwater immersion caused a 27% mortality rate in S. plicata, the acetic acid treatment was the most effective in eliminating this species (>90% mortality). However, a 33-40% mortality rate was registered in mussels. Both species were not affected by the hypersaline treatment in the last trial, but the sodium hypochlorite treatment led to a 57% mortality rate in mussels. Differences in mussels' growth rates were not detected. These trials represent a step forward in responding to the needs of aquaculture producers. However, further studies are needed to investigate the susceptibility of tunicates to treatments according to sexual maturation, as well as to ensure minimum mussel mortality in the most effective treatments, and to better understand the effects on mussel physiological performance in the long-term.

2.
Front Nutr ; 9: 888360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35614979

RESUMEN

Bone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...