Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS One ; 16(4): e0249604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822818

RESUMEN

Binary Generalized Linear Mixed Model (GLMM) is the most common method used by researchers to analyze clustered binary data in biological and social sciences. The traditional approach to GLMMs causes substantial bias in estimates due to steady shape of logistic and normal distribution assumptions thereby resulting into wrong and misleading decisions. This study brings forward an approach governed by skew generalized t distributions that belong to a class of potentially skewed and heavy tailed distributions. Interestingly, both the traditional logistic and probit mixed models, as well as other available methods can be utilized within the skew generalized t-link model (SGTLM) frame. We have taken advantage of the Expectation-Maximization algorithm accelerated via parameter-expansion for model fitting. We evaluated the performance of this approach to GLMMs through a simulation experiment by varying sample size and data distribution. Our findings indicated that the proposed methodology outperforms competing approaches in estimating population parameters and predicting random effects, when the traditional link and normality assumptions are violated. In addition, empirical standard errors and information criteria proved useful for detecting spurious skewness and avoiding complex models for probit data. An application with respiratory infection data points out to the superiority of the SGTLM which turns to be the most adequate model. In future, studies should focus on integrating the demonstrated flexibility in other generalized linear mixed models to enhance robust modeling.


Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Modelos Estadísticos , Infecciones del Sistema Respiratorio/patología , Adulto , Teorema de Bayes , Simulación por Computador , Femenino , Humanos , Modelos Lineales , Masculino , Proyectos de Investigación , Infecciones del Sistema Respiratorio/tratamiento farmacológico
2.
Parasit Vectors ; 11(1): 341, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884209

RESUMEN

BACKGROUND: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. METHODS: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models. RESULTS: A total of 1,373,929 specimens of the genus Culicoides belonging to at least 32 different species were collected in 96 sites during the survey. According to the RF (random forest) models which provided better estimates of abundances than Generalized Linear Models (GLM) models, environmental and climatic variables that influence species abundance were identified. Culicoides imicola, C. enderleini and C. miombo were mostly driven by average rainfall and minimum and maximum normalized difference vegetation index. Abundance of C. oxystoma was mostly determined by average rainfall and day temperature. Culicoides bolitinos had a particular trend; the environmental and climatic variables above had a lesser impact on its abundance. RF model prediction maps for the first four species showed high abundance in southern Senegal and in the groundnut basin area, whereas C. bolitinos was present in southern Senegal, but in much lower abundance. CONCLUSIONS: Environmental and climatic variables of importance that influence the spatial distribution of species abundance were identified. It is now crucial to evaluate the vector competence of major species and then combine the vector densities with densities of horses to quantify the risk of transmission of AHS virus across the country.


Asunto(s)
Enfermedad Equina Africana/transmisión , Lengua Azul/transmisión , Ceratopogonidae/fisiología , Enfermedades de los Caballos/transmisión , Insectos Vectores/fisiología , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/virología , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/aislamiento & purificación , Virus de la Enfermedad Equina Africana/fisiología , Distribución Animal , Animales , Lengua Azul/epidemiología , Lengua Azul/virología , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/aislamiento & purificación , Virus de la Lengua Azul/fisiología , Ceratopogonidae/virología , Ecosistema , Caballos , Insectos Vectores/virología , Modelos Estadísticos , Estaciones del Año , Senegal/epidemiología
3.
Parasit Vectors ; 9: 111, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26922792

RESUMEN

BACKGROUND: Climatic and environmental variables were used successfully by using models to predict Rift Valley fever (RVF) virus outbreaks in East Africa. However, these models are not replicable in the West African context due to a likely difference of the dynamic of the virus emergence. For these reasons specific models mainly oriented to the risk mapping have been developed. Hence, the areas of high vector pressure or virus activity are commonly predicted. However, the factors impacting their occurrence are poorly investigated and still unknown. In this study, we examine the impact of climate and environmental factors on the likelihood of occurrence of the two main vectors of RVF in West Africa (Aedes vexans and Culex poicilipes) hotspots. METHODS: We used generalized linear mixed models taking into account spatial autocorrelation, in order to overcome the default threshold for areas with high mosquito abundance identified by these models. Getis' Gi*(d) index was used to define local adult mosquito abundance clusters (hotspot). RESULTS: For Culex poicilipes, a decrease of the minimum temperature promotes the occurrence of hotspots, whereas, for Aedes vexans, the likelihood of hotspot occurrence is negatively correlated with relative humidity, maximum and minimum temperatures. However, for the two vectors, proximity to ponds would increase the risk of being in an hotspot area. CONCLUSIONS: These results may be useful in the improvement of RVF monitoring and vector control management in the Barkedji area.


Asunto(s)
Aedes/crecimiento & desarrollo , Culex/crecimiento & desarrollo , Insectos Vectores , Animales , Clima , Ambiente , Humedad , Senegal , Temperatura
4.
PLoS One ; 10(6): e0131021, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26121048

RESUMEN

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Asunto(s)
Ceratopogonidae/fisiología , Modelos Biológicos , Animales , Femenino , Análisis Multivariante , Reproducibilidad de los Resultados , Senegal , Especificidad de la Especie
5.
PLoS One ; 9(12): e114047, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25437856

RESUMEN

Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005-2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve RVF surveillance activities and to implement better intervention strategies.


Asunto(s)
Aedes/fisiología , Culex/fisiología , Insectos Vectores/fisiología , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Aedes/virología , Animales , Teorema de Bayes , Clima , Culex/virología , Humanos , Insectos Vectores/virología , Modelos Estadísticos , Densidad de Población , Lluvia , Senegal/epidemiología
6.
Parasit Vectors ; 7: 147, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24690198

RESUMEN

BACKGROUND: The African horse sickness epizootic in Senegal in 2007 caused considerable mortality in the equine population and hence major economic losses. The vectors involved in the transmission of this arbovirus have never been studied specifically in Senegal. This first study of the spatial and temporal dynamics of the Culicoides (Diptera: Ceratopogonidae) species, potential vectors of African horse sickness in Senegal, was conducted at five sites (Mbao, Parc Hann, Niague, Pout and Thies) in the Niayes area, which was affected by the outbreak. METHODS: Two Onderstepoort light traps were used at each site for three nights of consecutive collection per month over one year to measure the apparent abundance of the Culicoides midges. RESULTS: In total, 224,665 specimens belonging to at least 24 different species (distributed among 11 groups of species) of the Culicoides genus were captured in 354 individual collections. Culicoides oxystoma, Culicoides kingi, Culicoides imicola, Culicoides enderleini and Culicoides nivosus were the most abundant and most frequent species at the collection sites. Peaks of abundance coincide with the rainy season in September and October. CONCLUSIONS: In addition to C. imicola, considered a major vector for the African horse sickness virus, C. oxystoma may also be involved in the transmission of this virus in Senegal given its abundance in the vicinity of horses and its suspected competence for other arboviruses including bluetongue virus. This study depicted a site-dependent spatial variability in the dynamics of the populations of the five major species in relation to the eco-climatic conditions at each site.


Asunto(s)
Virus de la Enfermedad Equina Africana/fisiología , Virus de la Lengua Azul/fisiología , Ceratopogonidae/fisiología , Insectos Vectores/virología , Estaciones del Año , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/transmisión , Enfermedad Equina Africana/virología , Animales , Brotes de Enfermedades , Caballos , Dinámica Poblacional , Senegal/epidemiología , Especificidad de la Especie , Factores de Tiempo
7.
PLoS One ; 8(5): e64157, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23737972

RESUMEN

OBJECTIVE: We sought to identify predictors of in-hospital maternal mortality among women attending referral hospitals in Mali and Senegal. METHODS: We conducted a cross-sectional epidemiological survey using data from a cluster randomized controlled trial (QUARITE trial) in 46 referral hospitals in Mali and Senegal, during the pre-intervention period of the trial (from October 1st 2007 to October 1st 2008). We included 89,518 women who delivered in the 46 hospitals during this period. Data were collected on women's characteristics, obstetric complications, and vital status until the hospital discharge. We developed a tree-like classification rule (classification rule) to identify patient subgroups at high risk of maternal in-hospital mortality. RESULTS: Our analyses confirm that patients with uterine rupture, hemorrhage or prolonged/obstructed labor, and those who have an emergency ante-partum cesarean delivery have an increased risk of in-hospital mortality, especially if they are referred from another health facility. Twenty relevant patterns, based on fourteen predictors variables, are used to predict in-hospital maternal mortality with 81.41% sensitivity (95% CI = [77.12%-87.70%]) and 81.6% specificity (95% CI = [81.16%-82.02%]). CONCLUSION: The proposed class association rule method will help health care professionals in referral hospitals in Mali and Senegal to identify mothers at high risk of in-hospital death, and can provide scientific evidence on which to base their decisions to manage patients delivering in their health facilities.


Asunto(s)
Hospitales/estadística & datos numéricos , Adulto , Estudios Transversales , Recolección de Datos , Femenino , Humanos , Malí/epidemiología , Mortalidad Materna , Embarazo , Calidad de la Atención de Salud , Ensayos Clínicos Controlados Aleatorios como Asunto , Derivación y Consulta , Senegal/epidemiología
8.
PLoS One ; 6(11): e26364, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073159

RESUMEN

Despite considerable success of genome wide association (GWA) studies in identifying causal variants for many human diseases, their success in unraveling the genetic basis to complex diseases has been more mitigated. Pathogen population structure may impact upon the infectious phenotype, especially with the intense short-term selective pressure that drug treatment exerts on pathogens. Rigorous analysis that accounts for repeated measures and disentangles the influence of genetic and environmental factors must be performed. Attempts should be made to consider whether pathogen diversity will impact upon host genetic responses to infection.We analyzed the heritability of two Plasmodium falciparum phenotypes, the number of clinical malaria episodes (PFA) and the proportion of these episodes positive for gametocytes (Pfgam), in a family-based cohort followed for 19 years, during which time there were four successive drug treatment regimes, with documented appearance of drug resistance. Repeated measures and variance components analyses were performed with fixed environmental, additive genetic, intra-individual and maternal effects for each drug period. Whilst there was a significant additive genetic effect underlying PFA during the first drug period of study, this was lost in subsequent periods. There was no additive genetic effect for Pfgam. The intra-individual effect increased significantly in the chloroquine period.The loss of an additive genetic effect following novel drug treatment may result in significant loss of power to detect genes in a GWA study. Prior genetic analysis must be a pre-requisite for more detailed GWA studies. The temporal changes in the individual genetic and the intra-individual estimates are consistent with those expected if there were specific host-parasite interactions. The complex basis to the human response to malaria parasite infection likely includes dominance/epistatic genetic effects encompassed within the intra-individual variance component. Evaluating their role in influencing the outcome of infection through host genotype by parasite genotype interactions warrants research effort.


Asunto(s)
Malaria Falciparum/tratamiento farmacológico , Estudios de Cohortes , Enfermedades Endémicas , Humanos , Estudios Longitudinales , Malaria Falciparum/epidemiología , Fenotipo
9.
PLoS One ; 6(9): e24085, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931645

RESUMEN

Complex, high-dimensional data sets pose significant analytical challenges in the post-genomic era. Such data sets are not exclusive to genetic analyses and are also pertinent to epidemiology. There has been considerable effort to develop hypothesis-free data mining and machine learning methodologies. However, current methodologies lack exhaustivity and general applicability. Here we use a novel non-parametric, non-euclidean data mining tool, HyperCube®, to explore exhaustively a complex epidemiological malaria data set by searching for over density of events in m-dimensional space. Hotspots of over density correspond to strings of variables, rules, that determine, in this case, the occurrence of Plasmodium falciparum clinical malaria episodes. The data set contained 46,837 outcome events from 1,653 individuals and 34 explanatory variables. The best predictive rule contained 1,689 events from 148 individuals and was defined as: individuals present during 1992-2003, aged 1-5 years old, having hemoglobin AA, and having had previous Plasmodium malariae malaria parasite infection ≤10 times. These individuals had 3.71 times more P. falciparum clinical malaria episodes than the general population. We validated the rule in two different cohorts. We compared and contrasted the HyperCube® rule with the rules using variables identified by both traditional statistical methods and non-parametric regression tree methods. In addition, we tried all possible sub-stratified quantitative variables. No other model with equal or greater representativity gave a higher Relative Risk. Although three of the four variables in the rule were intuitive, the effect of number of P. malariae episodes was not. HyperCube® efficiently sub-stratified quantitative variables to optimize the rule and was able to identify interactions among the variables, tasks not easy to perform using standard data mining methods. Search of local over density in m-dimensional space, explained by easily interpretable rules, is thus seemingly ideal for generating hypotheses for large datasets to unravel the complexity inherent in biological systems.


Asunto(s)
Algoritmos , Minería de Datos/métodos , Malaria/epidemiología , Malaria/parasitología , Sistema del Grupo Sanguíneo ABO/genética , Niño , Preescolar , Femenino , Glucosafosfato Deshidrogenasa/genética , Humanos , Lactante , Modelos Logísticos , Malaria/genética , Masculino , Análisis Multivariante , Mutación , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Polimorfismo Genético , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...