Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 15(7): 1457-62, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24039014

RESUMEN

The synthesis and small-angle X-ray scattering (SAXS) characterization is reported for 20 laterally branched mesogenic molecules, which are derived from the common rod-shaped 2,5-bis([4-(octyloxy)phenyl]carbonyloxy) benzoic acid unit. These compounds have a varying degree of flexibility, in that their lateral branch is formed upon conversion of the acid to either an ester or an amide, and most laterally branched molecules exhibit relatively wide nematic liquid-crystal phases with a direct nematic-to-crystal transition at lower temperatures. SAXS studies reveal the presence of smectic-like nanostructures (clusters) with short-range order in the nematic phase, with characteristic correlation lengths from 3 to over 10 nm. The smectic layers that are contained in these clusters are tilted with respect to the nematic director by angles ranging from 0° (i.e. untilted) to 55°. In some compounds, the intensity of the SAXS peak corresponding to the smectic layer spacing depends strongly on temperature. The main features of the nanostructures can be understood based on the molecular structure; therefore, guiding future synthetic work towards more precisely controlled and technologically useful nanostructures in nematics.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011701, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19257046

RESUMEN

The role of chirality in membrane-forming lipids is not well appreciated at present. Here we demonstrate that the chirality of phospholipids makes fluid lipid bilayers piezoelectric. Thus, chiral lipids would play a central role in the functioning of cell membranes as active mechanotransducers. By periodically shearing and compressing nonaqueous lamellar phases of left ( L-alpha -phosphatidylcholine), right (D- alpha -phosphatidylcholine), and racemic (DL- alpha -phosphatidylcholine) lipids, we induced a tilt of the molecules with respect to the bilayer's normal and produced electric current perpendicular to the tilt plane, with the chiral lipids only. This effect is due to the Sm-A;{*} phase liquid crystal structure of the bilayers, which under molecular tilt becomes a ferroelectric Sm-C;{*} phase, where the polarization is normal to the tilt plane. This coupling allows for a wide variety of sensory possibilities of cell membranes such as mechanoreception, magnetosensitivity, as well as in-plane proton membrane transport and related phenomena such as adenosine triphosphate (ATP) synthesis, soft molecular machine performance, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...