Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 3(8): 100565, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671026

RESUMEN

We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Prueba de COVID-19 , Aclimatación , Aprendizaje Automático
2.
Nat Methods ; 18(11): 1294-1303, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725485

RESUMEN

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.


Asunto(s)
Biomarcadores de Tumor/genética , Proliferación Celular , Bases del Conocimiento , Neoplasias/patología , Programas Informáticos , Esferoides Celulares/patología , Microambiente Tumoral , Técnicas de Cultivo de Célula/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/clasificación , Neoplasias/metabolismo , RNA-Seq , Reproducibilidad de los Resultados , Esferoides Celulares/inmunología , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
3.
Sci Rep ; 11(1): 14813, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285291

RESUMEN

Recent statistics report that more than 3.7 million new cases of cancer occur in Europe yearly, and the disease accounts for approximately 20% of all deaths. High-throughput screening of cancer cell cultures has dominated the search for novel, effective anticancer therapies in the past decades. Recently, functional assays with patient-derived ex vivo 3D cell culture have gained importance for drug discovery and precision medicine. We recently evaluated the major advancements and needs for the 3D cell culture screening, and concluded that strictly standardized and robust sample preparation is the most desired development. Here we propose an artificial intelligence-guided low-cost 3D cell culture delivery system. It consists of a light microscope, a micromanipulator, a syringe pump, and a controller computer. The system performs morphology-based feature analysis on spheroids and can select uniform sized or shaped spheroids to transfer them between various sample holders. It can select the samples from standard sample holders, including Petri dishes and microwell plates, and then transfer them to a variety of holders up to 384 well plates. The device performs reliable semi- and fully automated spheroid transfer. This results in highly controlled experimental conditions and eliminates non-trivial side effects of sample variability that is a key aspect towards next-generation precision medicine.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Neoplasias/patología , Esferoides Celulares/citología , Inteligencia Artificial , Línea Celular Tumoral , Aprendizaje Profundo , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología
4.
Data Brief ; 36: 107090, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34026984

RESUMEN

Nowadays, three dimensional (3D) cell cultures are widely used in the biological laboratories and several optical clearing approaches have been proposed to visualize individual cells in the deepest layers of cancer multicellular spheroids. However, defining the most appropriate clearing approach for the different cell lines is an open issue due to the lack of a gold standard quantitative metric. In this article, we describe and share a single-cell resolution 3D image dataset of human carcinoma spheroids imaged using a light-sheet fluorescence microscope. The dataset contains 90 multicellular cancer spheroids derived from 3 cell lines (i.e. T-47D, 5-8F, and Huh-7D12) and cleared with 5 different protocols, precisely ClearT, ClearT2, CUBIC, ScaleA2, and Sucrose. To evaluate image quality and light penetration depth of the cleared 3D samples, all the spheroids have been imaged under the same experimental conditions, labelling the nuclei with the DRAQ5 stain and using a Leica SP8 Digital LightSheet microscope. The clearing quality of this dataset was annotated by 10 independent experts and thus allows microscopy users to qualitatively compare the effects of different optical clearing protocols on different cell lines. It is also an optimal testbed to quantitatively assess different computational metrics evaluating the image quality in the deepest layers of the spheroids.

5.
Comput Struct Biotechnol J ; 19: 1233-1243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717421

RESUMEN

3D multicellular spheroids quickly emerged as in vitro models because they represent the in vivo tumor environment better than standard 2D cell cultures. However, with current microscopy technologies, it is difficult to visualize individual cells in the deeper layers of 3D samples mainly because of limited light penetration and scattering. To overcome this problem several optical clearing methods have been proposed but defining the most appropriate clearing approach is an open issue due to the lack of a gold standard metric. Here, we propose a guideline for 3D light microscopy imaging to achieve single-cell resolution. The guideline includes a validation experiment focusing on five optical clearing protocols. We review and compare seven quality metrics which quantitatively characterize the imaging quality of spheroids. As a test environment, we have created and shared a large 3D dataset including approximately hundred fluorescently stained and optically cleared spheroids. Based on the results we introduce the use of a novel quality metric as a promising method to serve as a gold standard, applicable to compare optical clearing protocols, and decide on the most suitable one for a particular experiment.

6.
Comput Struct Biotechnol J ; 18: 1287-1300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612752

RESUMEN

Today, we are fully immersed into the era of 3D biology. It has been extensively demonstrated that 3D models: (a) better mimic the physiology of human tissues; (b) can effectively replace animal models; (c) often provide more reliable results than 2D ones. Accordingly, anti-cancer drug screenings and toxicology studies based on multicellular 3D biological models, the so-called "-oids" (e.g. spheroids, tumoroids, organoids), are blooming in the literature. However, the complex nature of these systems limit the manual quantitative analyses of single cells' behaviour in the culture. Accordingly, the demand for advanced software tools that are able to perform phenotypic analysis is fundamental. In this work, we describe the freely accessible tools that are currently available for biologists and researchers interested in analysing the effects of drugs/treatments on 3D multicellular -oids at a single-cell resolution level. In addition, using publicly available nuclear stained datasets we quantitatively compare the segmentation performance of 9 specific tools.

7.
Mol Biol Cell ; 31(20): 2179-2186, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32697683

RESUMEN

AnnotatorJ combines single-cell identification with deep learning (DL) and manual annotation. Cellular analysis quality depends on accurate and reliable detection and segmentation of cells so that the subsequent steps of analyses, for example, expression measurements, may be carried out precisely and without bias. DL has recently become a popular way of segmenting cells, performing unimaginably better than conventional methods. However, such DL applications may be trained on a large amount of annotated data to be able to match the highest expectations. High-quality annotations are unfortunately expensive as they require field experts to create them, and often cannot be shared outside the lab due to medical regulations. We propose AnnotatorJ, an ImageJ plugin for the semiautomatic annotation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that helps find the true contour of individual objects by applying U-Net-based presegmentation. The manual labor of hand annotating cells can be significantly accelerated by using our tool. Thus, it enables users to create such datasets that could potentially increase the accuracy of state-of-the-art solutions, DL or otherwise, when used as training data.


Asunto(s)
Curaduría de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Programas Informáticos
8.
Bioinformatics ; 36(9): 2948-2949, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31950986

RESUMEN

SUMMARY: Segmentation of single cells in microscopy images is one of the major challenges in computational biology. It is the first step of most bioimage analysis tasks, and essential to create training sets for more advanced deep learning approaches. Here, we propose 3D-Cell-Annotator to solve this task using 3D active surfaces together with shape descriptors as prior information in a semi-automated fashion. The software uses the convenient 3D interface of the widely used Medical Imaging Interaction Toolkit (MITK). Results on 3D biological structures (e.g. spheroids, organoids and embryos) show that the precision of the segmentation reaches the level of a human expert. AVAILABILITY AND IMPLEMENTATION: 3D-Cell-Annotator is implemented in CUDA/C++ as a patch for the segmentation module of MITK. The 3D-Cell-Annotator enabled MITK distribution can be downloaded at: www.3D-cell-annotator.org. It works under Windows 64-bit systems and recent Linux distributions even on a consumer level laptop with a CUDA-enabled video card using recent NVIDIA drivers. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Imagenología Tridimensional , Microscopía , Biología Computacional , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...