Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748589

RESUMEN

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.

2.
Plant Cell Environ ; 46(7): 2238-2254, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37157998

RESUMEN

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A. thaliana ZAR1 (AtZAR1) can interact with most ZRKs, except ZRK7. We found evidence of alternative splicing of ZRK7, resulting in a protein that can interact with AtZAR1. Despite high sequence conservation of ZAR1, interspecific ZAR1-ZRK pairings resulted in the autoactivation of cell death. We showed that ZAR1 interacts with a greater diversity of kinases than previously thought, while still possessing the capacity for specificity in kinase interactions. Finally, using AtZAR1-ZRK interaction data, we rationally increased ZRK10 interaction strength with AtZAR1, demonstrating the feasibility of the rational design of a ZAR1-interacting kinase. Overall, our findings advance our understanding of the rules governing ZAR1 interaction specificity, with promising future directions for expanding ZAR1 immunodiversity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Magnoliopsida/metabolismo , Fosfotransferasas/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta/fisiología , Pseudomonas syringae/fisiología , Proteínas Quinasas/metabolismo
3.
Plant Cell Environ ; 44(2): 629-644, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103794

RESUMEN

Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Fosfotransferasas/metabolismo , Enfermedades de las Plantas/inmunología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Biodiversidad , Proteínas Portadoras/genética , Fosfotransferasas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Unión Proteica , Dominios Proteicos , Pseudomonas syringae/fisiología
4.
PLoS One ; 13(8): e0202536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30153277

RESUMEN

Over the past half-century, large mammal populations have declined substantially throughout East Africa, mainly due to habitat loss and unsustainable direct exploitation. While it has been acknowledged that the loss of large mammals can have direct and cascading effects on community composition and ecosystem characteristics, limited quantitative work has been done on how declines of large herbivore populations impacts the abundance of mutualistic symbionts. Using a space-for-time observational approach, we quantified the large mammal community alongside the densities, host preferences and behaviors of mutualistic red-billed oxpeckers (Buphagus erythrorhynchus), and yellow-billed oxpeckers (Buphagus africanus) in northern Tanzania. At the landscape scale, mammal community composition was substantially less diverse in highly human-dominated areas when compared with more protected areas, with an observed complete loss of large wild mammal species in two study areas. Mirroring this trend, oxpecker densities were lowest in the least protected areas, and highest in fully protected areas. Using resource selection functions implemented via generalized linear models at different scales, we found that oxpeckers (1) were predominantly (67% of red-billed oxpeckers; 70% of yellow-billed oxpeckers) feeding on larger (between 500kg and 1500kg) ungulate host species within the mammal community, (2) usually preferred feeding on larger individuals (adults and males) within a specific host species population, and (3) preferred hosts that were more tolerant of their presence. In particular, cattle were especially intolerant of oxpecker presence and were relatively effective in displacing oxpeckers. We found little evidence that oxpecker feeding was parasitic across all host species; wound feeding was only observed on giraffe, comprising 6% and 4% of feeding behavior in red-billed and yellow-billed oxpeckers respectively. Thus, a loss of large-bodied and oxpecker tolerant host species is a likely explanation for declines of oxpecker populations in human dominated landscapes, which may have further cascading effects.


Asunto(s)
Aves , Ecosistema , Mamíferos , Simbiosis/fisiología , Animales , Pradera , Humanos , Tanzanía/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...