Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Am J Hum Genet ; 111(4): 778-790, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38531365

RESUMEN

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Exones , Discapacidad Intelectual/genética , Mamíferos/genética , Hipotonía Muscular/genética , Anomalías Musculoesqueléticas/genética , Neuroblastoma/genética , Trastornos del Neurodesarrollo/genética , Especies Reactivas de Oxígeno
2.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808736

RESUMEN

Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid de novo genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1, and RB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.

3.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37560121

RESUMEN

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

4.
Ann Clin Transl Neurol ; 10(6): 1046-1053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37194416

RESUMEN

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.


Asunto(s)
Epilepsia , Síndromes Epilépticos , Microcefalia , Humanos , Niño , Epilepsia/genética , Heterocigoto , Serina/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo
5.
Am J Med Genet A ; 191(10): 2482-2492, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37246601

RESUMEN

The contribution of mosaicism to diagnosed genetic disease and presumed de novo variants (DNV) is under investigated. We determined the contribution of mosaic genetic disease (MGD) and diagnosed parental mosaicism (PM) in parents of offspring with reported DNV (in the same variant) in the (1) Undiagnosed Diseases Network (UDN) (N = 1946) and (2) in 12,472 individuals electronic health records (EHR) who underwent genetic testing at an academic medical center. In the UDN, we found 4.51% of diagnosed probands had MGD, and 2.86% of parents of those with DNV exhibited PM. In the EHR, we found 6.03% and 2.99% and (of diagnosed probands) had MGD detected on chromosomal microarray and exome/genome sequencing, respectively. We found 2.34% (of those with a presumed pathogenic DNV) had a parent with PM for the variant. We detected mosaicism (regardless of pathogenicity) in 4.49% of genetic tests performed. We found a broad phenotypic spectrum of MGD with previously unknown phenotypic phenomena. MGD is highly heterogeneous and provides a significant contribution to genetic diseases. Further work is required to improve the diagnosis of MGD and investigate how PM contributes to DNV risk.


Asunto(s)
Variación Genética , Mosaicismo , Humanos , Pruebas Genéticas , Exoma , Padres
6.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798371

RESUMEN

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

7.
Am J Hum Genet ; 108(8): 1436-1449, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216551

RESUMEN

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.


Asunto(s)
Aberraciones Cromosómicas , Análisis Citogenético/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Mutación , Variaciones en el Número de Copia de ADN , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Masculino , Análisis de Secuencia de ADN
8.
Pediatrics ; 147(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33372121

RESUMEN

Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a fatty acid oxidation disorder in which the patient is unable to break down fats to produce energy. This disorder places children at risk for metabolic decompensation during periods of stress, such as routine childhood illnesses. The intent of this clinical report is to provide pediatricians with additional information regarding the acute clinical care of patients with MCADD. Although each patient with MCADD will still be expected to have a primary metabolic physician, the involvement of the primary care provider is crucial as well. Appropriate treatment of children with MCADD can lead to avoidance of morbidity and mortality.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo Lipídico/terapia , Carnitina/uso terapéutico , Niño , Urgencias Médicas , Fluidoterapia , Glucosa/administración & dosificación , Humanos , Hipoglucemia/etiología , Hipoglucemia/terapia , Complicaciones Intraoperatorias/prevención & control , Errores Innatos del Metabolismo Lipídico/complicaciones , Errores Innatos del Metabolismo Lipídico/diagnóstico , Complicaciones Posoperatorias/prevención & control , Premedicación , Edulcorantes/administración & dosificación
9.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
10.
J Pediatr ; 226: 202-212.e1, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32553838

RESUMEN

OBJECTIVES: To evaluate the clinical usefulness of rapid exome sequencing (rES) in critically ill children with likely genetic disease using a standardized process at a single institution. To provide evidence that rES with should become standard of care for this patient population. STUDY DESIGN: We implemented a process to provide clinical-grade rES to eligible children at a single institution. Eligibility included (a) recommendation of rES by a consulting geneticist, (b) monogenic disorder suspected, (c) rapid diagnosis predicted to affect inpatient management, (d) pretest counseling provided by an appropriate provider, and (e) unanimous approval by a committee of 4 geneticists. Trio exome sequencing was sent to a reference laboratory that provided verbal report within 7-10 days. Clinical outcomes related to rES were prospectively collected. Input from geneticists, genetic counselors, pathologists, neonatologists, and critical care pediatricians was collected to identify changes in management related to rES. RESULTS: There were 54 patients who were eligible for rES over a 34-month study period. Of these patients, 46 underwent rES, 24 of whom (52%) had at least 1 change in management related to rES. In 20 patients (43%), a molecular diagnosis was achieved, demonstrating that nondiagnostic exomes could change medical management in some cases. Overall, 84% of patients were under 1 month old at rES request and the mean turnaround time was 9 days. CONCLUSIONS: rES testing has a significant impact on the management of critically ill children with suspected monogenic disease and should be considered standard of care for tertiary institutions who can provide coordinated genetics expertise.


Asunto(s)
Secuenciación del Exoma , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas , Adolescente , Niño , Preescolar , Cuidados Críticos , Enfermedad Crítica , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Lactante , Recién Nacido , Masculino , Selección de Paciente , Estudios Retrospectivos
11.
Mol Genet Metab Rep ; 23: 100582, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32280589

RESUMEN

We report two brothers with severe global cognitive and motor delay, cortical visual impairment and sick sinus syndrome who were born to consanguineous parents. Standard genetic evaluations did not reveal the cause of their mental retardation. As expected, chromosomal microarray (CMA) revealed extensive regions of homozygosity. Exome sequencing revealed that both affected boys were homozygous for a nonsense mutation in the G-protein ß5 (GNB5) gene (NM_016194.3:c.1032C > G; Tyr344Ter), and that the parents were carriers of this mutation. No other DNA variants that were explanatory for the sick sinus or the developmental delay/intellectual disability were identified, and no other clinical parameters are likely to have contributed to this unusual combination of phenotypes. The neurologic features of our patients are more severe than those of most of the other patients previously reported with GNB5 variants, probably because of the homozygous, complete loss-of-function (nonsense/stop-gain) nature of their variant, and their clinical course has been monitored for longer duration.

12.
Am J Med Genet A ; 179(9): 1783-1790, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31294511

RESUMEN

Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.96 Mb. We describe a newborn with a de novo 2.7 Mb deletion of 20p11.22p11.21 that partially overlaps previously reported deletions and encompasses FOXA2. Her clinical findings further expand the 20p11.2 deletion phenotype to include severe midline cranial and intracranial defects such as aqueductal stenosis with hydrocephalus, mesencephalosynapsis with diencephalic-mesencephalic junction dysplasia, and pyriform aperture stenosis. We also report one individual with a missense variant in FOXA2 who had abnormal glucose homeostasis, panhypopituitarism, and endodermal organ dysfunction. Together, these findings support the critical role of FOXA2 in panhypopituitarism and midline defects.


Asunto(s)
Encéfalo/anomalías , Constricción Patológica/genética , Factor Nuclear 3-beta del Hepatocito/genética , Hipopituitarismo/genética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Deleción Cromosómica , Cromosomas Humanos Par 20/genética , Constricción Patológica/diagnóstico por imagen , Constricción Patológica/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/genética , Hidrocefalia/fisiopatología , Hipopituitarismo/diagnóstico por imagen , Hipopituitarismo/fisiopatología , Recién Nacido , Mutación Missense/genética , Fenotipo , Corteza Piriforme/diagnóstico por imagen , Corteza Piriforme/fisiopatología
13.
Am J Med Genet A ; 179(5): 842-845, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30828993

RESUMEN

We describe a neonate with severe respiratory failure due to acinar dysplasia found by rapid exome sequencing (rES), to have a deletion containing the TBX4 gene. rES can affect patient management in the intensive care unit and should be considered in concert with lung biopsy in neonates with undifferentiated respiratory failure.


Asunto(s)
Células Acinares/metabolismo , Secuenciación del Exoma , Exoma , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/genética , Eliminación de Secuencia , Proteínas de Dominio T Box/genética , Biopsia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Recién Nacido , Masculino
14.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817854

RESUMEN

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Animales , Biopsia , Células CHO , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Cricetulus , Femenino , Humanos , Masculino , Mutación
15.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639323

RESUMEN

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/mortalidad , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Herencia Materna , Organogénesis , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/metabolismo
16.
Birth Defects Res ; 111(12): 822-828, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30677250

RESUMEN

BACKGROUND: The teratogenic effects of prenatal alcohol exposure (PAE) have been extensively documented over the course of 45 years of research and psychiatric problems are pervasive in this population. In adults with PAE, suicidal risk is high but less is known about the suicidal risk in adolescents with fetal alcohol spectrum disorders (FASD). This study describes the prevalence of suicidal ideation and serious suicide attempts in a sample of 54 adolescents between the ages of 13 and 18 years with FASD. METHODS: Adolescents were diagnosed with FASD using the Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. The Children's Interview for Psychiatric Syndromes was used to identify those adolescents who experienced suicidal ideation and/or who had made a serious suicide attempt in the last 12 months. RESULTS: The prevalence of suicidal behaviors in this sample was high with 35.2% of teens reporting incidences of suicidal ideation and 13.0% reporting at least one serious suicide attempt in the past year. This finding is in contrast to the 17.2% and 2.4% for ideation and serious attempts, respectively, reported in the general U.S. adolescent population. Alarmingly, 29.2% of males with FASD reported a serious suicide attempt which was 19½ times higher than national norms for males. No females reported attempts. Number of home placements and the presence of a depressive disorder contributed to study outcomes. CONCLUSIONS: Findings demonstrate the significant risk for suicidality in this population, particularly adolescent males, and the need to assess and treat this life threatening behavior.


Asunto(s)
Conducta del Adolescente , Trastorno Depresivo , Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Ideación Suicida , Intento de Suicidio/psicología , Adolescente , Trastorno Depresivo/epidemiología , Trastorno Depresivo/psicología , Femenino , Trastornos del Espectro Alcohólico Fetal/epidemiología , Trastornos del Espectro Alcohólico Fetal/psicología , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Efectos Tardíos de la Exposición Prenatal/psicología , Prevalencia , Factores de Riesgo , Factores Sexuales
17.
Mol Genet Metab ; 124(4): 254-265, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29960856

RESUMEN

Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells. We performed metabolic flux analysis in human GK-overexpressing H4IIE cells and found that overexpressing cells had significantly altered fluxes through central carbon and lipid metabolism including increased flux through the pentose phosphate pathway and increased production of lipids. We also observed an equal contribution of glycerol to carbohydrate metabolism in all cell lines, suggesting that GK's alternate functions rather than its enzymatic function are important for these processes. To further elucidate the contributions of the enzymatic (phosphorylation) and alternative (ASTP) functions of GK in adipogenesis, we performed experiments on mammalian GK and E. coli GK. We determined that the ASTP function of GK (which is absent in E. coli GK) plays a greater role than the enzymatic activity in these processes. These studies further emphasize GK's diverse functionality and provides fundamental insights into the multiple protein functions of glycerol kinase.


Asunto(s)
Adipogénesis/genética , Proteínas Portadoras/genética , Glicerol Quinasa/genética , Metabolismo de los Lípidos/genética , Animales , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras/química , Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica , Glicerol/metabolismo , Glicerol Quinasa/química , Humanos , Regiones Promotoras Genéticas , Ratas
19.
J Pediatr Genet ; 5(4): 220-224, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27895974

RESUMEN

Craniofacial malformations include a variety of anomalies, including cleft lip with or without cleft palate, craniosynostosis, microtia, and hemifacial microsomia. All of these anomalies can be either isolated or part of a defined genetic syndrome. A clinical geneticist or genetic counselor should be a member of the craniofacial team to help determine which patients have isolated anomalies and which are likely to have a syndrome. They would then arrange for the appropriate genetic testing to confirm the diagnosis of the specific syndrome. The identification of the specific syndrome is important for the overall care of the patient (as it identifies risk for other medical problems such as congenital heart defect) that will have to be taken into account in the care of the craniofacial malformation. In addition, knowing the specific syndrome will allow the family to understand how this happened to their child and the recurrence risk for future pregnancies. With the advent of new technologies, there are now many types of genetic testing available (including, karyotype, fluorescence in situ hybridization, chromosomal microarrays, and next generation sequencing) and the medical geneticist and genetic counselor can determine which specific testing is needed for a given patient.

20.
Mol Genet Metab ; 119(3): 288-292, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27746033

RESUMEN

Mathematical modeling approaches have been commonly used in complex signaling pathway studies such as the insulin signal transduction pathway. Our expanded mathematical model of the insulin signal transduction pathway was previously shown to effectively predict glucose clearance rates using mRNA levels of key components of the pathway in a mouse model. In this study, we re-optimized and applied our expanded model to study insulin sensitivity in other species and tissues (human skeletal muscle) with altered protein activities of insulin signal transduction pathway components. The model has now been optimized to predict the effect of short term exercise on insulin sensitivity for human test subjects with obesity or type II diabetes mellitus. A comparison between our extended model and the original model showed that our model better simulates the GLUT4 translocation events of the insulin signal transduction pathway and glucose uptake as a clinically relevant model output. Results from our extended model correlate with O'Gorman's published in-vivo results. This study demonstrates the ability to adapt this model to study insulin sensitivity to many biological systems (human skeletal muscle and mouse liver) with minimal changes in the model parameters.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/genética , Modelos Teóricos , Obesidad/genética , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Humanos , Insulina/genética , Ratones , Obesidad/complicaciones , Obesidad/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...