Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ophthalmic Genet ; : 1-5, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38590032

RESUMEN

INTRODUCTION: BRPF1 gene on 3p26-p25 encodes a protein involved in epigenetic regulation, through interaction with histone H3 lysine acetyltransferases KAT6A and KAT6B of the MYST family. Heterozygous pathogenic variants in BRPF1 gene are associated with Intellectual Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP), characterized by global developmental delay, intellectual disability, language delay, and dysmorphic facial features. The reported ocular involvement includes strabismus, amblyopia, and refraction errors. This report describes a novel ocular finding in patients affected by variants in the BRPF1 gene. METHODS: We performed exome sequencing and deep ocular phenotyping in two unrelated patients (P1, P2) with mild intellectual disability, ptosis, and typical facies. RESULTS: Interestingly, P1 had a Chiari Malformation type I and a subclinical optic neuropathy, which could not be explained by variations in other genes. Having detected a peculiar ocular phenotype in P1, we suggested optical coherence tomography (OCT) for P2; such an exam also detected bilateral subclinical optic neuropathy in this case. DISCUSSION: To date, only a few patients with BRPF1 variants have been described, and none were reported to have optic neuropathy. Since subclinical optic nerve alterations can go easily undetected, our experience highlights the importance of a more detailed ophthalmologic evaluation in patients with BRPF1 variant.

2.
J Am Soc Nephrol ; 34(4): 706-720, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753701

RESUMEN

SIGNIFICANCE STATEMENT: To optimize the diagnosis of genetic kidney disorders in a cost-effective manner, we developed a workflow based on referral criteria for in-person evaluation at a tertiary center, whole-exome sequencing, reverse phenotyping, and multidisciplinary board analysis. This workflow reached a diagnostic rate of 67%, with 48% confirming and 19% modifying the suspected clinical diagnosis. We obtained a genetic diagnosis in 64% of children and 70% of adults. A modeled cost analysis demonstrated that early genetic testing saves 20% of costs per patient. Real cost analysis on a representative sample of 66 patients demonstrated an actual cost reduction of 41%. This workflow demonstrates feasibility, performance, and economic effect for the diagnosis of genetic kidney diseases in a real-world setting. BACKGROUND: Whole-exome sequencing (WES) increases the diagnostic rate of genetic kidney disorders, but accessibility, interpretation of results, and costs limit use in daily practice. METHODS: Univariable analysis of a historical cohort of 392 patients who underwent WES for kidney diseases showed that resistance to treatments, familial history of kidney disease, extrarenal involvement, congenital abnormalities of the kidney and urinary tract and CKD stage ≥G2, two or more cysts per kidney on ultrasound, persistent hyperechoic kidneys or nephrocalcinosis on ultrasound, and persistent metabolic abnormalities were most predictive for genetic diagnosis. We prospectively applied these criteria to select patients in a network of nephrology centers, followed by centralized genetic diagnosis by WES, reverse phenotyping, and multidisciplinary board discussion. RESULTS: We applied this multistep workflow to 476 patients with eight clinical categories (podocytopathies, collagenopathies, CKD of unknown origin, tubulopathies, ciliopathies, congenital anomalies of the kidney and urinary tract, syndromic CKD, metabolic kidney disorders), obtaining genetic diagnosis for 319 of 476 patients (67.0%) (95% in 21 patients with disease onset during the fetal period or at birth, 64% in 298 pediatric patients, and 70% in 156 adult patients). The suspected clinical diagnosis was confirmed in 48% of the 476 patients and modified in 19%. A modeled cost analysis showed that application of this workflow saved 20% of costs per patient when performed at the beginning of the diagnostic process. Real cost analysis of 66 patients randomly selected from all categories showed actual cost reduction of 41%. CONCLUSIONS: A diagnostic workflow for genetic kidney diseases that includes WES is cost-saving, especially if implemented early, and is feasible in a real-world setting.


Asunto(s)
Insuficiencia Renal Crónica , Sistema Urinario , Adulto , Recién Nacido , Humanos , Niño , Flujo de Trabajo , Riñón , Pruebas Genéticas , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética
3.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628451

RESUMEN

Bartter (BS) and Gitelman (GS) syndrome are autosomal recessive inherited tubulopathies, whose clinical diagnosis can be challenging, due to rarity and phenotypic overlap. Genotype-phenotype correlations have important implications in defining kidney and global outcomes. The aim of our study was to assess the diagnostic rate of whole-exome sequencing (WES) coupled with a bioinformatic analysis of copy number variations in a population of 63 patients with BS and GS from a single institution, and to explore genotype-phenotype correlations. We obtained a diagnostic yield of 86% (54/63 patients), allowing disease reclassification in about 14% of patients. Although some clinical and laboratory features were more commonly reported in patients with BS or GS, a significant overlap does exist, and age at onset, preterm birth, gestational age and nephro-calcinosis are frequently misleading. Finally, chronic kidney disease (CKD) occurs in about 30% of patients with BS or GS, suggesting that the long-term prognosis can be unfavorable. In our cohort the features associated with CKD were lower gestational age at birth and a molecular diagnosis of BS, especially BS type 1. The results of our study demonstrate that WES is useful in dealing with the phenotypic heterogeneity of these disorders, improving differential diagnosis and genotype-phenotype correlation.


Asunto(s)
Síndrome de Bartter , Síndrome de Gitelman , Nacimiento Prematuro , Insuficiencia Renal Crónica , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Variaciones en el Número de Copia de ADN , Femenino , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Humanos , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...