Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 24(4): 824-837.e3, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30044980

RESUMEN

Immunoglobulin M (IgM) memory cells undergo differentiation in germinal centers following antigen challenge, but the full effector cell potential of these cells is unknown. We monitored the differentiation of enhanced yellow fluorescent protein (eYFP)-labeled CD11c+ and CD11cneg T-bet+ IgM memory cells after their transfer into naive recipient mice. Following challenge infection, many memory cells differentiated into IgM-producing plasmablasts. Other donor B cells entered germinal centers, downregulated CD11c, underwent class switch recombination, and became switched memory cells. Yet other donor cells were maintained as IgM memory cells, and these IgM memory cells retained their multi-lineage potential following serial transfer. These findings were corroborated at the molecular level using immune repertoire analyses. Thus, IgM memory cells can differentiate into all effector B cell lineages and undergo self-renewal, properties that are characteristic of stem cells. We propose that these memory cells exist to provide long-term multi-functional immunity and act primarily to maintain the production of protective antibodies.


Asunto(s)
Linfocitos B/inmunología , Memoria Inmunológica/inmunología , Animales , Diferenciación Celular/inmunología , Ehrlichia/inmunología , Ehrlichiosis/inmunología , Femenino , Inmunoglobulina M/inmunología , Ratones , Ratones Endogámicos C57BL
2.
Infect Immun ; 83(5): 2139-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25776744

RESUMEN

Infection of mice with the bacterium Ehrlichia muris elicits a protective T cell-independent (TI) IgM response mediated primarily by a population of CD11c-expressing plasmablasts in the spleen. Although splenic marginal zone (MZ) B cells are considered to be important for TI responses to blood-borne pathogens, MZ B cells were not responsible for generating plasmablasts in response to Ehrlichia muris. Moreover, antigen-specific serum IgM was decreased only modestly in splenectomized mice and in mice that lacked spleen, lymph nodes, and Peyer's patches (SLP mice). Both splenectomized and SLP mice were protected against lethal ehrlichial challenge infection. Moreover, we found a high frequency of Ehrlichia-specific plasmablasts in the omentum of both conventional and SLP mice. Omental plasmablasts elicited during Ehrlichia infection lacked expression of CD138 but expressed CD11c in a manner similar to that of their splenic counterparts. Selective ablation of CD11c-expressing B cells nearly eliminated the omental Ehrlichia-specific plasmablasts and reduced antigen-specific serum IgM, identifying the omental B cells as a source of IgM production in the SLP mice. Generation of the omental plasmablasts was route dependent, as they were detected following peritoneal infection but not following intravenous infection. Our data identify the omentum as an important auxiliary site of IgM production during intracellular bacterial infection.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Ehrlichiosis/inmunología , Inmunoglobulina M/metabolismo , Epiplón/inmunología , Células Plasmáticas/inmunología , Animales , Antígeno CD11c/análisis , Ehrlichia/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Epiplón/patología , Sindecano-1/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...