Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 58(19): 6641-62, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24018569

RESUMEN

Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce 'LED maps' as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm(2)) and 18 MV (1 × 1 cm(2)) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm(2)) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm(2)) or 6 MV (3 × 3cm(2)) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm(2)) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm(2)) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).


Asunto(s)
Electrones , Neoplasias Pulmonares/cirugía , Pulmón/efectos de la radiación , Tratamientos Conservadores del Órgano/métodos , Radiocirugia/métodos , Tomografía Computarizada Cuatridimensional , Humanos , Pulmón/citología , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Método de Montecarlo , Fantasmas de Imagen , Radiocirugia/efectos adversos
2.
Phys Med Biol ; 58(12): 4157-74, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23689060

RESUMEN

Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung phantom were reduced by 200 HU compared with known CT number values. For the three patients, dose results using the CBCT number data registered with PCT showed a prescription dose reduction ranging from 4 to 13% (D95 = 47 Gy). Therefore, accurate determination of lung density, especially for very low lung density (<0.2 g cm(-3)) is essential, but difficult to achieve using the CBCT data. Applying corrective techniques (1) and (2) to CBCT patient data produced unacceptable dose differences. For one typical VMAT SBRT patient, the D95 for the corrected CBCT and BCT image-based plans differed by -4% (D95 = 52 Gy) and 9% (D95 = 59 Gy) compared to the co-registered PCT image-based plan. However, corrective technique (3) produced negligible dose differences comparing LCT and PCT image-based plans. With regard to implementing on-line DART, dose errors must be minimized because they affect re-optimization decisions, and prevent accurate accumulation of the dose distribution.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico , Electrones , Pulmón/diagnóstico por imagen , Pulmón/cirugía , Radiocirugia/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Masculino , Fantasmas de Imagen , Radiografía Torácica , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
3.
Phys Med Biol ; 57(6): 1543-59, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22391122

RESUMEN

Modern radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use tightly conformed megavoltage x-ray fields to irradiate a tumour within lung tissue. For these conditions, lateral electron disequilibrium (LED) may occur, which systematically perturbs the dose distribution within tumour and nearby lung tissues. The goal of this work is to determine the combination of beam and lung density parameters that cause significant LED within and near the tumour. The Monte Carlo code DOSXYZnrc (National Research Council of Canada, Ottawa, ON) was used to simulate four 20 × 20 × 25 cm(3) water-lung-water slab phantoms, which contained lung tissue only, or one of three different centrally located small tumours (sizes: 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5 cm(3)). Dose calculations were performed using combinations of six beam energies (Co-60 up to 18 MV), five field sizes (1 × 1 cm(2) up to 15 × 15 cm(2)), and 12 lung densities (0.001 g cm(-3) up to 1 g cm(-3)) for a total of 1440 simulations. We developed the relative depth-dose factor (RDDF), which can be used to characterize the extent of LED (RDDF <1.0). For RDDF <0.7 severe LED occurred, and both lung and tumour dose were drastically reduced. For example, a 6 MV (3 × 3 cm(2)) field was used to irradiate a 1 cm(3) tumour embedded in lung with ultra-low density of 0.001 g cm(-3) (RDDF = 0.2). Dose in up-stream lung and tumour centre were reduced by as much as 80% with respect to the water density calculation. These reductions were worse for smaller tumours irradiated with high energy beams, small field sizes, and low lung density. In conclusion, SBRT trials based on dose calculations in homogeneous tissue are misleading as they do not reflect the actual dosimetric effects due to LED. Future clinical trials should only use dose calculation engines that can account for electron scatter, with special attention given to patients with low lung density (i.e. emphysema). In cases where tissue inhomogeneity corrections are applied, the nature of the correction used may be inadequate in predicting the correct level of LED. In either case, the dose to the tumour is not the prescribed dose and clinical response data are uncertain. The new information from this study can be used by radiation oncologists who wish to perform advanced radiation therapy techniques while avoiding the deleterious predictable dosimetric effects of LED.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Simulación por Computador , Electrones , Enfisema/complicaciones , Enfisema/diagnóstico por imagen , Humanos , Pulmón/diagnóstico por imagen , Pulmón/efectos de la radiación , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico por imagen , Método de Montecarlo , Fantasmas de Imagen , Radiografía , Radiocirugia/estadística & datos numéricos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA