Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(12): 108443, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38094249

RESUMEN

We show that inactivating AMPK in a genetic medulloblastoma model depletes tumor stem cells and slows progression. In medulloblastoma, the most common malignant pediatric brain tumor, drug-resistant stem cells co-exist with transit-amplifying cells and terminally differentiated neuronal progeny. Prior studies show that Hk2-dependent glycolysis promotes medulloblastoma progression by suppressing neural differentiation. To determine how the metabolic regulator AMPK affects medulloblastoma growth and differentiation, we inactivated AMPK genetically in medulloblastomas. We bred conditional Prkaa1 and Prkaa2 deletions into medulloblastoma-prone SmoM2 mice and compared SmoM2-driven medulloblastomas with intact or inactivated AMPK. AMPK-inactivation increased event-free survival (EFS) and altered cellular heterogeneity, increasing differentiation and decreasing tumor stem cell populations. Surprisingly, AMPK-inactivation decreased mTORC1 activity and decreased Hk2 expression. Hk2 deletion similarly depleted medulloblastoma stem cells, implicating reduced glycolysis in the AMPK-inactivated phenotype. Our results show that AMPK inactivation disproportionately impairs medulloblastoma stem cell populations typically refractory to conventional therapies.

2.
Res Sq ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333134

RESUMEN

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

4.
Sci Adv ; 8(4): eabl5838, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080986

RESUMEN

The therapeutic potential of CDK4/6 inhibitors for brain tumors has been limited by recurrence. To address recurrence, we tested a nanoparticle formulation of CDK4/6 inhibitor palbociclib (POx-Palbo) in mice genetically-engineered to develop SHH-driven medulloblastoma, alone or in combination with specific agents suggested by our analysis. Nanoparticle encapsulation reduced palbociclib toxicity, enabled parenteral administration, improved CNS pharmacokinetics, and extended mouse survival, but recurrence persisted. scRNA-seq identified up-regulation of glutamate transporter Slc1a2 and down-regulation of diverse ribosomal genes in proliferating medulloblastoma cells in POx-Palbo-treated mice, suggesting mTORC1 signaling suppression, subsequently confirmed by decreased 4EBP1 phosphorylation. Combining POx-Palbo with the mTORC1 inhibitor sapanisertib produced mutually enhancing effects and prolonged mouse survival compared to either agent alone, contrasting markedly with other tested drug combinations. Our data show the potential of nanoparticle formulation and scRNA-seq analysis of resistance to improve brain tumor treatment and identify POx-Palbo + Sapanisertib as effective combinatorial therapy for SHH medulloblastoma.

5.
Commun Biol ; 4(1): 616, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021242

RESUMEN

It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development. We genetically engineered mice to express oncogenic SmoM2, starting in multipotent glio-neuronal stem cells, or committed neural progenitors. Both groups developed medulloblastomas with similar transcriptomic profiles. We compared medulloblastoma progression, radiosensitivity, and cellular heterogeneity, determined by single-cell transcriptomic analysis (scRNA-seq). Stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing stem-like cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, down-regulated stem-like cells and were curable with radiation. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, with more Ccr2+ macrophages and fewer Igf1+ microglia, indicating that developmental events affected the subsequent tumor microenvironment. Reduced mTORC1 activity in M-Smo tumors suggests that differential Igf1 contributed to differences in phenotype. Developmental events in tumorigenesis that were obscure in transcriptomic profiles thus remained cryptic determinants of tumor composition and outcome. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic/methylomic studies with analyses that resolve cellular heterogeneity.


Asunto(s)
Linaje de la Célula , Neoplasias Cerebelosas/patología , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Meduloblastoma/patología , Tolerancia a Radiación/genética , Células Madre/patología , Transcriptoma/efectos de la radiación , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/radioterapia , Heterogeneidad Genética , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual , Células Madre/efectos de la radiación , Microambiente Tumoral
6.
Nanomedicine ; 32: 102345, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33259959

RESUMEN

We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.


Asunto(s)
Anilidas/farmacocinética , Anilidas/uso terapéutico , Sistema Nervioso Central/patología , Neoplasias Cerebelosas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Meduloblastoma/tratamiento farmacológico , Nanopartículas/química , Oxazoles/química , Piridinas/farmacocinética , Piridinas/uso terapéutico , Anilidas/efectos adversos , Anilidas/farmacología , Animales , Disponibilidad Biológica , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Ratones , Micelas , Tamaño de la Partícula , Unión Proteica , Piridinas/efectos adversos , Piridinas/farmacología , Albúmina Sérica/metabolismo
7.
Nat Commun ; 10(1): 5829, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863004

RESUMEN

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously.


Asunto(s)
Neoplasias Cerebelosas/genética , Resistencia a Antineoplásicos/genética , Proteínas Hedgehog/antagonistas & inhibidores , Meduloblastoma/genética , Transducción de Señal/genética , Anilidas/farmacología , Anilidas/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Cerebelo/citología , Cerebelo/patología , Femenino , Mutación con Ganancia de Función , Proteínas Hedgehog/genética , Humanos , Masculino , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Terapia Molecular Dirigida/métodos , Proteína MioD/genética , Células Madre Neoplásicas/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , RNA-Seq , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Receptor Smoothened/genética , Factor de Transcripción HES-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...