Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 60(19): 14913-14923, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34546040

RESUMEN

The hybrid compound [Cu(cyclam)(H2O)2]0.5[{Cu(cyclam)}1.5{B-H2As2Mo6O26(H2O)}]·9H2O (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane) was synthesized in aqueous solution by reacting the {Cu(cyclam)}2+ complex with a mixture of heptamolybdate and an arsenate(V) source. Crystal packing of 1 exhibits a supramolecular open-framework built of discrete covalent molybdoarsenate/metalorganic units and additional [Cu(cyclam)(H2O)2]2+ cations, the stacking of which generates squarelike channels parallel to the z axis with an approximate cross section of 10 × 11 Å2 where all the hydration water molecules are hosted. Thermal evacuation of solvent molecules yields a new anhydrous crystalline phase, but compound 1 does not preserve its single-crystalline nature upon heating. However, when crystals are dehydrated under vacuum, they undergo a structural transformation that proceeds via a single-crystal-to-single-crystal pathway, leading to the anhydrous phase [{Cu(cyclam)}2(A-H2As2Mo6O26)] (2). Total dehydration results in important modifications within the inorganic cluster skeleton which reveals an unprecedented solid-state B to A isomerization of the polyoxoanion. This transition also involves changes in the CuII bonding scheme that lead to covalent cluster/metalorganic layers by retaining the open-framework nature of 1. Compound 2 adsorbs ambient moisture upon air exposure, but it does not revert back to 1, and the hydrated phase [{Cu(cyclam)}2(A-H2As2Mo6O26)]·6H2O (2h) is obtained instead. Structural variations between 1 and 2 are reflected in electron paramagnetic resonance spectroscopy measurements, and the permanent microporosity of 2 provides interesting functionalities to the system such as the selective adsorption of gaseous CO2 over N2.

2.
Dalton Trans ; 50(25): 8727-8735, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34076649

RESUMEN

Layered structures of flexible mixed-linker metal-organic frameworks termed IRHs-(4 and 5) (IRH = Institut de Recherche sur l'Hydrogène) were synthesized by mixing cyclam, tetrakis(4-carboxyphenyl)benzene (TCPB), and copper and zinc metal salts respectively. The new materials characterized by single-crystal X-ray diffraction exhibited the features of HOFs and MOFs. Their structures are formed by coordination and hydrogen bonds that link metallocyclam (with Cu or Zn) and TCPB to a 2D sheet which is further packed to form a 3D structure with 1D microchannels. Remarkably, the as-synthesized IRHs-(4 and 5) contain DMF in the channels that can be exchanged with DCM and afterward removed from the framework by heating without losing their single-crystallinity. This enabled an easy elucidation of the structural transformations by single-crystal and powder X-ray diffraction analyses. Experimental studies of single-component adsorption isotherms of pure CO2, CH4, and N2 gases have been carried out for all activated IRHs. Based on the obtained adsorption isotherms, theoretical calculations using Ideal Adsorbed Solution Theory (IAST) have been performed to predict the selectivity of equimolar CO2/CH4 and CO2/N2 (1 : 1) binary mixtures. The simulations predicted outstanding selectivity for CO2/N2 than for CO2/CH4 at low pressures, reaching 185 for IRH-4 and 130 for IRH-5 at 1 bar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...