Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32385083

RESUMEN

The Phaeobacter genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many in vitro trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture. Hence, the purpose of this study was to investigate how the addition of a TDA-producing Phaeobacter inhibens strain affects the microbiomes of live feed organisms and fish larvae. We used 16S rRNA gene sequencing to characterize the bacterial diversity associated with live feed microalgae (Tetraselmis suecica), live feed copepod nauplii (Acartia tonsa), and turbot (Scophthalmus maximus) eggs/larvae. The microbial communities were unique to the three organisms investigated, and the addition of the probiotic bacterium had various effects on the diversity and richness of the microbiomes. The structure of the live feed microbiomes was significantly changed, while no effect was seen on the community structure associated with turbot larvae. The changes were seen primarily in particular taxa. The Rhodobacterales order was indigenous to all three microbiomes and decreased in relative abundance when P. inhibens was introduced in the copepod and turbot microbiomes, while it was unaffected in the microalgal microbiome. Altogether, the study demonstrates that the addition of P. inhibens in higher concentrations, as part of a probiotic regime, does not appear to cause major imbalances in the microbiome, but the effects were specific to closely related taxa.IMPORTANCE This work is an essential part of the risk assessment of the application of roseobacters as probiotics in mariculture. It provides insights into the impact of TDA-producing Phaeobacter inhibens on the commensal bacteria related to mariculture live feed and fish larvae. Also, the study provides a sequencing-based characterization of the microbiomes related to mariculture-relevant microalga, copepods, and turbot larvae.


Asunto(s)
Chlorophyta/microbiología , Copépodos/microbiología , Peces Planos/microbiología , Microbiota , Probióticos/farmacología , Rhodobacteraceae/química , Alimentación Animal , Animales , Bacterias/aislamiento & purificación , Copépodos/crecimiento & desarrollo , Peces Planos/crecimiento & desarrollo , Larva/microbiología , Microalgas/microbiología , Óvulo/microbiología , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
2.
Environ Microbiol Rep ; 11(4): 581-588, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102321

RESUMEN

The Roseobacter group is a widespread marine bacterial group, of which some species produce the broad-spectrum antibiotic tropodithietic acid (TDA). A mode of action for TDA has previously been proposed in Escherichia coli, but little is known about its effect on non-producing marine bacteria at in situ concentrations. The purpose of this study was to investigate how a sub-lethal level of TDA affects Vibrio vulnificus at different time points (30 and 60 min) using a transcriptomic approach. Exposure to TDA for as little as 30 min resulted in the differential expression of genes associated with cell regeneration, including the up-regulation of those involved in biogenesis of the cell envelope. Defence mechanisms including oxidative stress defence proteins and iron uptake systems were also up-regulated in response to TDA, while motility-related genes were down-regulated. Gene expression data and scanning electron microscopy imaging revealed a switch to a biofilm phenotype in the presence of TDA. Our study shows that a low concentration of this antibiotic triggers a defence response to reactive oxygen species and iron depletion in V. vulnificus, which indicates that the mode of action of TDA is likely more complex in this bacterium than what is known for E. coli.


Asunto(s)
Antibacterianos/farmacología , Expresión Génica/efectos de los fármacos , Tropolona/análogos & derivados , Vibrio vulnificus/efectos de los fármacos , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Transporte Biológico/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Hierro/metabolismo , Estrés Oxidativo/genética , Tropolona/farmacología , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Vibrio vulnificus/ultraestructura
3.
Environ Microbiol Rep ; 11(3): 401-413, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30277320

RESUMEN

Bacteria-host interactions are universal in nature and have significant effects on host functionality. Bacterial secondary metabolites are believed to play key roles in such interactions as well as in interactions within the host-associated microbial community. Hence, prominent secondary metabolite-producing bacteria may be strong drivers of microbial community composition in natural host-associated microbiomes. This has, however, not been rigorously tested, and the purpose of this study was to investigate how the secondary metabolite producer Phaeobacter inhibens affects the diversity and composition of microbiomes associated with the microalga Emiliania huxleyi and the European flat oyster, Ostrea edulis. Roseobacters were indigenous to both communities exhibiting relative abundances between 2.8% and 7.0%. Addition of P. inhibens caused substantial changes in the overall structure of the low-complexity microbiome of E. huxleyi, but did not shape microbial community structure to the same degree in the more complex oyster microbiomes. Species-specific interactions occurred in both microbiomes and specifically the abundances of other putative secondary metabolite-producers such as vibrios and pseudoalteromonads were reduced. Thus, the impact of a bioactive strain like P. inhibens on host-associated microbiomes depends on the complexity and composition of the existing microbiome.


Asunto(s)
Microbiota/fisiología , Rhodobacteraceae/fisiología , Animales , Biodiversidad , Haptophyta/microbiología , Especificidad del Huésped , Microalgas/microbiología , Interacciones Microbianas , Microbiota/genética , Ostreidae/microbiología , ARN Ribosómico 16S/genética
4.
Front Microbiol ; 8: 2049, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123505

RESUMEN

Staphylococcus aureus, a major food-poisoning pathogen, is a common contaminant in dairy industries worldwide, including in Brazil. We determined the occurrence of S. aureus in five dairies in Brazil over 8 months. Of 421 samples, 31 (7.4%) were positive for S. aureus and prevalence varied from 0 to 63.3% between dairies. Sixty-six isolates from the 31 samples were typed by Multi-Locus Sequence Typing to determine if these isolates were persistent or continuously reintroduced. Seven known sequence types (STs), ST1, ST5, ST30, ST97, ST126, ST188 and ST398, and four new ST were identified, ST3531, ST3540, ST3562 and ST3534. Clonal complex (CC) 1 (including the four new ST), known as an epidemic clone, was the dominant CC. However, there were no indications of persistence of particular ST. The resistance toward 11 antibiotic compounds was assessed. Twelve profiles were generated with 75.8% of strains being sensitive to all antibiotic classes and no Methicillin-resistant S. aureus (MRSA) strains were found. The enterotoxin-encoding genes involved in food-poisoning, e.g., sea, sed, see, and seg were targeted by PCR. The two toxin-encoding genes, sed and see, were not detected. Only three strains (4.5%) harbored seg and two of these also harbored sea. Despite the isolates being Methicillin-sensitive S. aureus (MSSA), the presence of CC1 clones in the processing environment, including some harboring enterotoxin encoding genes, is of concern and hygiene must have high priority to reduce contamination.

6.
J Clin Microbiol ; 53(1): 262-72, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392358

RESUMEN

Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified the multilocus sequence type (MLST), haplotype, plasmid replicon, antimicrobial resistance genes, and genetic relatedness by single nucleotide polymorphism (SNP) analysis and genomic deletions. The outbreak affected 2,040 patients, with a fatality rate of 0.5%. Most (83.0%) isolates were multidrug resistant (MDR). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon, the class 1 integron, and the mer operon. The genomic analysis revealed 415 SNP differences overall and 35 deletions among 33 of the isolates subjected to whole-genome sequencing. In comparison with other genomes of H58, the Zambian isolates separated from genomes from Central Africa and India by 34 and 52 SNPs, respectively. The phylogenetic analysis indicates that 32 of the 33 isolates sequenced belonged to a tight clonal group distinct from other H58 genomes included in the study. The small numbers of SNPs identified within this group are consistent with the short-term transmission that can be expected over a period of 2 years. The phylogenetic analysis and deletions suggest that a single MDR clone was responsible for the outbreak, during which occasional other S. Typhi lineages, including sensitive ones, continued to cocirculate. The common view is that the emerging global S. Typhi haplotype, H58B, containing the MDR IncHI1 plasmid is responsible for the majority of typhoid infections in Asia and sub-Saharan Africa; we found that a new variant of the haplotype harboring a chromosomally translocated region containing the MDR islands of IncHI1 plasmid has emerged in Zambia. This could change the perception of the term "classical MDR typhoid" currently being solely associated with the IncHI1 plasmid. It might be more common than presently thought that S. Typhi haplotype H58B harbors the IncHI1 plasmid or a chromosomally translocated MDR region or both.


Asunto(s)
Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Genómica , Salmonella typhi/efectos de los fármacos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/microbiología , Antibacterianos/farmacología , Niño , Preescolar , Cromosomas Bacterianos , Conjugación Genética , Evolución Molecular , Femenino , Orden Génico , Genes Bacterianos , Haplotipos , Historia del Siglo XXI , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Mutación , Filogenia , Plásmidos , Polimorfismo de Nucleótido Simple , Salmonella typhi/clasificación , Eliminación de Secuencia , Translocación Genética , Fiebre Tifoidea/historia , Zambia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...