Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Innate Immun ; : 1-15, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513034

RESUMEN

The melanization and Toll pathways, regulated by a network of serine proteases and noncatalytic serine protease homologs (SPHs), have been investigated mostly in adult and larval insects. However, how these innate immune reactions are regulated in insect eggs remains unclear. Here we present evidence from transcriptome and proteome analyses that extra-embryonic tissues (yolk and serosa) of early-stage Manduca sexta eggs are immune competent, with expression of immune effector genes including prophenoloxidase and antimicrobial peptides. We identified gene products of the melanization and Toll pathways in M. sexta eggs. Through in vitro reconstitution experiments, we demonstrated that constitutive and infection-induced serine protease cascade modules that stimulate immune responses exist in the extra-embryonic tissues of M. sexta eggs. The constitutive module (HP14b-SP144-GP6) may promote rapid early immune signaling by forming a cascade activating the cytokine Spätzle and regulating melanization by activating prophenoloxidase (proPO). The inducible module (HP14a-HP21-HP5) may trigger enhanced activation of Spätzle and proPO at a later phase of infection. Crosstalk between the two modules may occur in transition from the constitutive to the induced response in eggs inoculated with bacteria. Examination of data from two other well-studied insect species, Tribolium castaneum and Drosophila melanogaster, supports a role for a serosa-dependent constitutive protease cascade in protecting early embryos against invading pathogens.

2.
Insect Biochem Mol Biol ; 149: 103844, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115517

RESUMEN

The insect cuticle is a key component of their success, being important for protection, communication, locomotion, and support. Conversely, as an exoskeleton, it also limits the size of the insect and must be periodically molted and a new one synthesized, to permit growth. To achieve this, the insect secretes a solution of chitinases, proteases and other proteins, known collectively as molting fluid, during each molting process to break down and recycle components of the old cuticle. Previous research has focused on the degradative enzymes in molting fluid and offered some characterization of their biochemical properties. However, identification of the specific proteins involved remained to be determined. We have used 2D SDS-PAGE and LC/MS-based proteomic analysis to identify proteins in the molting fluid of the tobacco hornworm, Manduca sexta, undergoing the larval to pupal molt. We categorized these proteins based on their proposed functions including chitin metabolism, proteases, peptidases, and immunity. This analysis complements previous reported work on M. sexta molting fluid and identifies candidate genes for enzymes involved in cuticle remodeling. Proteins classified as having an immune function highlight potential for molting fluid to act as an immune barrier to prevent infections during the cuticle degradation and ecdysis processes. Several proteins known to function in melanin synthesis as an immune response in hemolymph were present in molting fluid. We demonstrated that the bacterium Micrococcus luteus and the entomopathogenic fungus Beauveria bassiana can stimulate activation of phenoloxidase in molting fluid, indicating that the recognition proteins, protease cascade, and prophenoloxidase needed for melanin synthesis are present as a defense against infection during cuticle degradation. This analysis offers insights for proteins that may be important not only for molting in M. sexta but for insects in general.


Asunto(s)
Quitinasas , Manduca , Animales , Quitina/metabolismo , Endopeptidasas , Proteínas de Insectos/metabolismo , Larva/metabolismo , Manduca/genética , Melaninas/metabolismo , Muda/fisiología , Monofenol Monooxigenasa , Péptido Hidrolasas , Proteómica , Pupa/metabolismo
3.
Acta Biomater ; 151: 457-467, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35933099

RESUMEN

Changes in physical properties of Tenebrio molitor and Tribolium castaneum elytra (hardened forewings) were studied to understand how the development of microstructure and chemical interactions determine cuticle mechanical properties. Analysis of these properties supports a model in which cuticular material is continuously secreted from epidermal cells to produce an extracellular matrix so that the outermost layers mature first. It is hypothesized that enzymatic crosslinking and pigmentation reactions along with dehydration help to stabilize the protein-chitin network within the initial layers of cuticle shortly after eclosion. Mature layers are proposed to bear most of the mechanical loads. The frequency dependence of the storage modulus and the tan δ values decreased during the beginning of maturation, reaching constant values after 48 h post-eclosion. A decrease of tan δ indicates an increase in crosslinking of the material. The water content declined from 75% to 31%, with a significant portion lost from within the open spaces between the dorsal and ventral cuticular layers. Dehydration had a less significant influence than protein crosslinking on the mechanical properties of the elytron during maturation. When Tribolium cuticular protein TcCP30 expression was decreased by RNAi, the tan δ and frequency dependence of E' of the elytron did not change during maturation. This indicates that TcCP30 plays a role in the crosslinking process of the beetle's exoskeleton. This study was inspired by previous work on biomimetic multicomponent materials and helps inform future work on creating robust lightweight materials derived from natural sources. STATEMENT OF SIGNIFICANCE: Examination of changes in the physical properties of the elytra (hardened forewings) of two beetle species advanced understanding of how the molecular interactions influence the mechanical properties of the elytra. Physical characterization, including dynamic mechanical analysis, determined that the outer portion of the elytra matured first, while epidermal cells continued to secrete reactive components until the entire structure reached maturation. RNA interference was used to identify the role of a key protein in the elytra. Suppression of its expression reduced the formation of crosslinked polymeric components in the elytra. Identifying the molecular interactions in the matrix of proteins and polysaccharides in the elytra together with their hierarchical architecture provides important design concepts in the development of biomimetic materials.


Asunto(s)
Escarabajos , Tribolium , Animales , Quitina , Deshidratación , Tribolium/genética , Tribolium/metabolismo , Agua
4.
Insect Sci ; 28(2): 495-508, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32237057

RESUMEN

Iron is essential to life, but surprisingly little is known about how iron is managed in nonvertebrate animals. In mammals, the well-characterized transferrins bind iron and are involved in iron transport or immunity, whereas other members of the transferrin family do not have a role in iron homeostasis. In insects, the functions of transferrins are still poorly understood. The goals of this project were to identify the transferrin genes in a diverse set of insect species, resolve the evolutionary relationships among these genes, and predict which of the transferrins are likely to have a role in iron homeostasis. Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins. Our analysis suggests that transferrin 2 arose prior to the origin of insects, and transferrins 1, 3, and 4 arose early in insect evolution. Primary sequence analysis of each of the insect transferrins was used to predict signal peptides, carboxyl-terminal transmembrane regions, GPI-anchors, and iron binding. Based on this analysis, we suggest that transferrins 2, 3, and 4 are unlikely to play a major role in iron homeostasis. In contrast, the transferrin 1 orthologs are predicted to be secreted, soluble, iron-binding proteins. We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis. Interestingly, it appears that the louse, aphid, and thrips lineages have lost the transferrin 1 gene and, thus, have evolved to manage iron without transferrins.


Asunto(s)
Homeostasis , Proteínas de Insectos/genética , Insectos/genética , Hierro/metabolismo , Transferrinas/genética , Animales , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Filogenia , Análisis de Secuencia de Proteína , Transferrinas/metabolismo
5.
BMC Res Notes ; 12(1): 7, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616595

RESUMEN

OBJECTIVE: Hemolymph plays many important roles in the physiology of an insect throughout its lifetime; however, for small-bodied insects, studies are lacking because of the difficulties encountered while collecting hemolymph. The objective of our study was to develop a method to collect hemolymph plasma from various stages of Tribolium castaneum and to evaluate phenoloxidase activity in the plasma samples. We first designed a procedure for easily and quickly collecting clear hemolymph plasma from T. castaneum. RESULTS: By using this method, we collected approximately 5 µl plasma from 30 individuals at the larval, pupal or adult stages. And then, we studied the expression of phenoloxidase by performing western blot analysis of the plasma samples and found that phenoloxidase is present in hemolymph in each developmental stage. We also measured phenoloxidase activity in control plasma and plasma treated with Gram-positive bacteria, Micrococcus luteus. Phenoloxidase activity was greater in some of the M. luteus-treated plasma samples compared with control samples. Thus, we developed a method to collect hemolymph plasma that is suitable for studies of phenoloxidase activity.


Asunto(s)
Hemolinfa/enzimología , Inmunidad Innata/fisiología , Monofenol Monooxigenasa/metabolismo , Manejo de Especímenes/métodos , Tribolium/enzimología , Animales , Femenino , Larva , Masculino , Pupa , Tribolium/crecimiento & desarrollo
6.
Insect Biochem Mol Biol ; 102: 21-30, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30237077

RESUMEN

Members of the serpin superfamily of proteins occur in animals, plants, bacteria, archaea and some viruses. They adopt a variety of physiological functions, including regulation of immune system, modulation of apoptosis, hormone transport and acting as storage proteins. Most members of the serpin family are inhibitors of serine proteinases. In this study, we searched the genome of Manduca sexta and identified 32 serpin genes. We analyzed the structure of these genes and the sequences of their encoded proteins. Three M. sexta genes (serpin-1, serpin-15, and serpin-28) have mutually exclusive alternatively spliced exons encoding the carboxyl-terminal reactive center loop of the protein, which is the site of interaction with target proteases. We discovered that MsSerpin-1 has 14 splicing isoforms, including two undiscovered in previous studies. Twenty-eight of the 32 M. sexta serpins include a putative secretion signal peptide and are predicted to be extracellular proteins. Phylogenetic analysis of serpins in M. sexta and Bombyx mori indicates that 17 are orthologous pairs, perhaps carrying out essential physiological functions. Analysis of the reactive center loop and hinge regions of the protein sequences indicates that 16 of the serpin genes encode proteins that may lack proteinase inhibitor activity. Our annotation and analysis of these serpin genes and their transcript profiles should lead to future advances in experimental study of their functions in insect biochemistry.


Asunto(s)
Genes de Insecto , Proteínas de Insectos/genética , Manduca/genética , Filogenia , Serpinas/genética , Animales
7.
Biomacromolecules ; 19(7): 2391-2400, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29697975

RESUMEN

The interactions among biomacromolecules within insect cuticle may offer new motifs for biomimetic material design. CPR27 is an abundant protein in the rigid cuticle of the elytron from Tribolium castaneum. CPR27 contains the Rebers-Riddiford (RR) motif, which is hypothesized to bind chitin. In this study, active magnetic microrheology coupled with microscopy and protein particle analysis techniques were used to correlate alterations in the viscosity of chitosan solutions with changes in solution microstructure. Addition of CPR27 to chitosan solutions led to a 3-fold drop in viscosity. This change was accompanied by the presence of micrometer-sized coacervate particles in solution. Coacervate formation had a strong dependence on chitosan concentration. Analysis showed the existence of a critical CPR27 concentration beyond which a significant increase in particle count was observed. These effects were not observed when a non-RR cuticular protein, CP30, was tested, providing evidence of a structure-function relationship related to the RR motif.


Asunto(s)
Quitosano/análogos & derivados , Proteínas de Insectos/química , Secuencias de Aminoácidos , Animales , Tribolium/química
8.
Insect Biochem Mol Biol ; 76: 118-147, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27522922

RESUMEN

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.


Asunto(s)
Expresión Génica , Genoma de los Insectos , Manduca/genética , Animales , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Manduca/crecimiento & desarrollo , Pupa/genética , Pupa/crecimiento & desarrollo , Análisis de Secuencia de ADN , Sintenía
9.
Sci Rep ; 6: 29583, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387523

RESUMEN

Insects can rapidly adapt to environmental changes through physiological responses. The red flour beetle Tribolium castaneum is widely used as a model insect species. However, the stress-response system of this species remains unclear. Superoxide dismutase 2 (SOD2) is a crucial antioxidative enzyme that is found in mitochondria. T. castaneum SOD2 (TcSOD2) is composed of 215 amino acids, and has an iron/manganese superoxide dismutase domain. qRT-PCR experiments revealed that TcSOD2 was present through all developmental stages. To evaluate TcSOD2 function in T. castaneum, we performed RNAi and also assessed the phenotype and antioxidative tolerance of the knockdown of TcSOD2 by exposing larvae to paraquat. The administration of paraquat resulted in significantly higher 24-h mortality in TcSOD2 knockdown larval groups than in the control groups. The TcSOD2 knockdown adults moved significantly more slowly, had lower ATP content, and exhibited a different body color from the control groups. We found that TcSOD2 dsRNA treatment in larvae resulted in increased expression of tyrosinase and laccase2 mRNA after 10 days. This is the first report showing that TcSOD2 has an antioxidative function and demonstrates that T. castaneum may use an alternative antioxidative system when the SOD2-based system fails.


Asunto(s)
Locomoción/efectos de los fármacos , Paraquat/farmacología , Pigmentación/efectos de los fármacos , Superóxido Dismutasa/genética , Tribolium/fisiología , Adenosina Trifosfato/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Lacasa/genética , Larva/efectos de los fármacos , Larva/genética , Monofenol Monooxigenasa/genética , Tribolium/efectos de los fármacos , Tribolium/enzimología , Tribolium/genética
10.
Sci Rep ; 5: 10484, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25994234

RESUMEN

In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N-acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo, a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle.


Asunto(s)
Proteínas de Insectos/metabolismo , Tribolium/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quitina/metabolismo , Hormonas de Insectos/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Lacasa/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Fenotipo , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tribolium/crecimiento & desarrollo , Alas de Animales/metabolismo , Alas de Animales/ultraestructura
11.
Insect Biochem Mol Biol ; 59: 58-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25701385

RESUMEN

Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.


Asunto(s)
Anopheles/enzimología , Ascorbato Oxidasa/metabolismo , Proteínas de Insectos/metabolismo , Manduca/enzimología , Tribolium/enzimología , Secuencia de Aminoácidos , Animales , Ácido Ascórbico/química , Ceruloplasmina/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Compuestos Ferrosos/química , Hemolinfa/enzimología , Proteínas de Insectos/genética , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Especificidad de la Especie , Especificidad por Sustrato
12.
Insect Biochem Mol Biol ; 62: 100-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25576653

RESUMEN

The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.


Asunto(s)
Proteínas de Insectos/metabolismo , Manduca/metabolismo , Secuencias de Aminoácidos , Animales , Genoma de los Insectos , Proteínas de Insectos/genética , Manduca/genética , Anotación de Secuencia Molecular , Filogenia , Proteómica
13.
Insect Biochem Mol Biol ; 62: 127-41, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25524298

RESUMEN

In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects.


Asunto(s)
Proteínas Portadoras/metabolismo , Genoma de los Insectos , Proteínas de Insectos/metabolismo , Manduca/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Proteínas Portadoras/genética , Dominio Catalítico , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Proteínas de Insectos/genética , Insectos/genética , Manduca/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia
14.
J Proteome Res ; 11(1): 269-78, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22087475

RESUMEN

The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, Tribolium castaneum, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles.


Asunto(s)
Epidermis/metabolismo , Proteínas de Insectos/metabolismo , Proteoma/metabolismo , Transcriptoma , Tribolium/metabolismo , Alas de Animales/citología , Animales , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fragmentos de Péptidos/química , Mapeo Peptídico , Proteoma/química , Proteoma/genética , Proteómica , Tribolium/citología , Tribolium/genética
15.
Insect Biochem Mol Biol ; 42(3): 193-202, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198355

RESUMEN

Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-ß-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 to 550 min⁻¹ mM⁻¹. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 to 30 min⁻¹ mM⁻¹; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min⁻¹ mM⁻¹. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions.


Asunto(s)
Anopheles/enzimología , Proteínas de Insectos/metabolismo , Lacasa/metabolismo , Tribolium/enzimología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Anopheles/química , Catecolaminas/análisis , Femenino , Concentración de Iones de Hidrógeno , Proteínas de Insectos/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Lacasa/aislamiento & purificación , Masculino , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
16.
J Proteome Res ; 10(4): 1505-18, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21226539

RESUMEN

The relationship between aphids and their host plants is thought to be functionally analogous to plant-pathogen interactions. Although virulence effector proteins that mediate plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, equivalent molecules in aphids and other phloem-feeders are poorly understood. A dual transcriptomic-proteomic approach was adopted to generate a catalog of candidate effector proteins from the salivary glands of the pea aphid, Acyrthosiphon pisum. Of the 1557 transcript supported and 925 mass spectrometry identified proteins, over 300 proteins were identified with secretion signals, including proteins that had previously been identified directly from the secreted saliva. Almost half of the identified proteins have no homologue outside aphids and are of unknown function. Many of the genes encoding the putative effector proteins appear to be evolving at a faster rate than homologues in other insects, and there is strong evidence that genes with multiple copies in the genome are under positive selection. Many of the candidate aphid effector proteins were previously characterized in typical phytopathogenic organisms (e.g., nematodes and fungi) and our results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle.


Asunto(s)
Áfidos/química , Perfilación de la Expresión Génica , Proteínas de Insectos/análisis , Proteoma/análisis , Proteómica/métodos , Saliva/química , Secuencia de Aminoácidos , Animales , Áfidos/metabolismo , Electroforesis en Gel Bidimensional , Etiquetas de Secuencia Expresada , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Filogenia , Señales de Clasificación de Proteína/genética , Alineación de Secuencia
17.
Insect Biochem Mol Biol ; 40(3): 179-88, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20219675

RESUMEN

Multicopper oxidases (MCOs) are a group of related proteins that are ubiquitous in nature. They perform a wide variety of functions including pigmentation, lignin synthesis and degradation, iron homeostasis, and morphogenesis. The laccases of fungi are intensely studied for their biotechnological potential as a more environmentally friendly alternative to harsh or toxic chemicals used for certain industrial applications. Research into insect MCOs has recently attracted renewed interest as it is evident that they have diverse roles in insect physiology. MCO mRNA or enzymatic activity has been detected in extracts from epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Genome sequencing has allowed for the identification of MCO genes and revealed that the number of genes can vary between species. The function of one of the genes, MCO2, has been demonstrated to be a laccase-type phenoloxidase critical for cuticle sclerotization. However, the enzymatic properties and physiological functions of the remaining MCOs remain to be elucidated. A better understanding of the roles MCOs play in insect biology may help to develop new control measures of pest species.


Asunto(s)
Insectos/enzimología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Expresión Génica , Insectos/genética , Datos de Secuencia Molecular , Oxidorreductasas/antagonistas & inhibidores
18.
Insect Biochem Mol Biol ; 40(3): 252-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20219676

RESUMEN

Current theories of sclerotization center on protein cross-linking and dehydration as major factors in the hardening and stability of the insect cuticle. Several studies have reported the identification of catechol-amino acid adducts from sclerotizing cuticle involving histidine, lysine, and tyrosine, though there have been no reports of a catechol linked between two amino acid residues. Previously, we reported an in vitro model system for sclerotization and observed that stable protein oligomers were formed, presumably through cross-links with oxidized catecholamines [Insect Biochem. Mol. Biol. (2006) 36, 353-365]. Using site-directed mutagenesis we created a mutant lacking histidine, rMsCP36(H65A/H178A), to investigate the possible involvement of the two histidine residues of MsCP36 in cross-linking. Surprisingly, this alteration had little or no effect on the formation of protein oligomers as determined by SDS-PAGE analysis. Blocking of the free amino groups in lysyl side chains and the amino-terminus by succinylation diminished, but did not eliminate, cross-linking of either rMsCP36 or rMsCP36(H65A/H178A). We also examined the possibility that cross-linking was due to intermolecular dityrosine linkages. Immunoblot analysis utilizing a monoclonal antibody known to recognize peptidyl dityrosine indicated that dityrosyl cross-links were present. Taken together, these results indicate that lysyl residues are important for the cross-linking of the cuticle protein rMsCP36, but that additional residues other than histidine can also contribute.


Asunto(s)
Proteínas de Insectos/metabolismo , Manduca/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Insectos/genética , Manduca/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida
19.
Insect Biochem Mol Biol ; 40(3): 259-66, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20149870

RESUMEN

Querying the genome of the red flour beetle, Tribolium castaneum, with the Drosophila melanogaster Yellow-y (DmY-y) protein sequence identified 14 Yellow homologs. One of these is an ortholog of DmY-y, which is required for cuticle pigmentation (melanization), and another is an ortholog of DmY-f/f2, which functions as a dopachrome conversion enzyme (DCE). Phylogenetic analysis identified putative T. castaneum orthologs for eight of the D. melanogaster yellow genes, including DmY-b, -c, -e, -f, -g, -g2, -h and -y. However, one clade of five beetle genes, TcY-1-5, has no orthologs in D. melanogaster. Expression profiles of all T. castaneum yellow genes were determined by RT-PCR of pharate pupal to young adult stages. TcY-b and TcY-c were expressed throughout all developmental stages analyzed, whereas each of the remaining yellow genes had a unique expression pattern, suggestive of distinct physiological functions. TcY-b, -c and -e were all identified by mass spectrometry of elytral proteins from young adults. Eight of the 14 genes showed differential expression between elytra and hindwings during the last three days of the pupal stage when the adult cuticle is synthesized. Double-stranded RNA (dsRNA)-mediated transcript knockdown revealed that TcY-y is required for melanin production in the hindwings, particularly in the region of the pterostigma, while TcY-f appears to be required for adult cuticle sclerotization but not pigmentation.


Asunto(s)
Proteínas de Insectos/genética , Pigmentación , Tribolium/genética , Animales , Perfilación de la Expresión Génica , Proteínas de Insectos/metabolismo , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Filogenia , Proteómica , Interferencia de ARN , ARN Bicatenario , ARN Mensajero/metabolismo , Tribolium/crecimiento & desarrollo , Tribolium/metabolismo , Alas de Animales/metabolismo
20.
Insect Biochem Mol Biol ; 39(9): 596-606, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19576986

RESUMEN

Laccases belong to the group of multicopper oxidases that exhibit wide substrate specificity for polyphenols and aromatic amines. They are found in plants, fungi, bacteria, and insects. In insects the only known role for laccase is in cuticle sclerotization. However, extracting laccase from the insect's cuticle requires proteolysis, resulting in an enzyme that is missing its amino-terminus. To circumvent this problem, we expressed and purified full-length and amino-terminally truncated recombinant forms of laccase-2 from the tobacco hornworm, Manduca sexta. We also purified the endogenous enzyme from the pharate pupal cuticle and used peptide mass fingerprinting analysis to confirm that it is laccase-2. All three enzymes had pH optima between 5 and 5.5 when using N-acetyldopamine (NADA) or N-beta-alanyldopamine-alanyldopamine (NBAD) as substrates. The laccases exhibited typical Michaelis-Menten kinetics when NADA was used as a substrate, with K(m) values of 0.46 mM, 0.43 mM, and 0.63 mM, respectively, for the full-length recombinant, truncated recombinant, and cuticular laccases; the apparent k(cat) values were 100 min(-1), 80 min(-1), and 290 min(-1). The similarity in activity of the two recombinant laccases suggests that laccase-2 is expressed in an active form rather than as a zymogen, as had been previously proposed. This conclusion is consistent with the detection of activity in untanned pupal wing cuticle using the laccase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Immunoblot analysis of proteins extracted from both tanned and untanned cuticle detected only a single protein of 84 kDa, consistent with the full-length enzyme. With NBAD as substrate, the full-length recombinant and cuticular laccases showed kinetics indicative of substrate inhibition, with K(m) values of 1.9 mM and 0.47 mM, respectively, and apparent k(cat) values of 200 min(-1) and 180 min(-1). These results enhance our understanding of cuticle sclerotization, and may aid in the design of insecticides targeting insect laccases.


Asunto(s)
Proteínas de Insectos/química , Lacasa/química , Manduca/enzimología , Oxidorreductasas/química , Secuencia de Aminoácidos , Animales , Estabilidad de Enzimas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Cinética , Lacasa/genética , Lacasa/metabolismo , Manduca/química , Manduca/genética , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...