Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119674, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242328

RESUMEN

Cardiac fibrosis is a major cause of dysfunctions and arrhythmias in failing hearts. At the cellular level fibrosis is mediated by cardiac myofibroblasts, which display an increased migratory capacity and secrete large amounts of extracellular matrix. These properties allow myofibroblasts to invade, remodel and stiffen the myocardium and eventually alter cardiac function. While the enhanced ability of cardiac myofibroblasts to migrate has been proposed to contribute to the initiation of the fibrotic process, the molecular mechanisms controlling their motile function have been poorly defined. In this context, our current findings indicate that A-kinase anchoring protein 2 (AKAP2) associates with actin at the leading edge of migrating cardiac myofibroblasts. Proteomic analysis of the AKAP2 interactome revealed that this anchoring protein assembles a signaling complex composed of the extracellular regulated kinase 1 (ERK1) and its upstream activator Grb2 that mediates the activation of ERK in cardiac myofibroblasts. Silencing AKAP2 expression results in a significant reduction in the phosphorylation of ERK1 and its downstream effector WAVE2, a protein involved in actin polymerization, and impairs the ability of cardiac myofibroblasts to migrate. Importantly, disruption of the interaction between AKAP2 and F-actin using cell-permeant competitor peptides, inhibits the activation of the ERK-WAVE2 signaling axis, resulting in a reduction of the translocation of Arp2 to the leading-edge membrane and in inhibition of cardiac myofibroblast migration. Collectively, these findings suggest that AKAP2 functions as an F-actin bound molecular scaffold mediating the activation of an ERK1-dependent promigratory transduction pathway in cardiac myofibroblasts.


Asunto(s)
Actinas , Miofibroblastos , Proteína Quinasa 3 Activada por Mitógenos , Proteómica , Corazón
2.
Virchows Arch ; 483(5): 635-643, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726450

RESUMEN

Extra-pituitary ACTH secretion is associated with a variety of neoplastic conditions and may cause the so-called ectopic ACTH-dependent Cushing syndrome (CS). The clarification of the mechanisms of extra-pituitary ACTH expression would provide potential therapeutic targets for this complex and severe disease. In the adenohypophysis, the transcription factor TPIT, co-operating with other molecules, induces POMC expression and ACTH production. However, no data are currently available on the presence and role of TPIT expression in extra-pituitary ACTH-producing neoplasms. This study was designed to explore TPIT expression in a series of pulmonary and pancreatic ACTH-producing tumors, either CS-associated or not. Forty-one extra-pituitary ACTH-producing neuroendocrine tumors (NETs) were included in the study, encompassing 32 NETs of the lung (LuNETs), 7 of the pancreas (PanNETs), and 2 pheochromocytomas. Of these, 9 LuNETs, all PanNETs, and the two pheochromocytomas were CS-associated. For comparison, 6 NETs of the pituitary gland (PitNETs; 3 ACTH-secreting and 3 ACTH-negative) and 35 ACTH-negative extra-pituitary NETs (15 Lu-NETs and 20 PanNETs) were analyzed. Immunohistochemistry with specific anti-TPIT antibodies and quantitative real-time PCR (qRT-PCR) were performed using standard protocols. TPIT expression was completely absent (protein and mRNA) in PanNETs, pheochromocytomas, and all ACTH-negative NETs. In contrast, it was expressed in 16/32 LuNETs, although with lower levels than in PitNETs. No definite relationship was found between immunohistochemistry TPIT expression and NET grade or the presence of Cushing syndrome. This study further highlights the clinical and biological heterogeneity of extra-pituitary ACTH secretion and suggests that the differences between ACTH-secreting PanNETs and LuNETs may mirror distinct molecular mechanisms underlying POMC expression. Our results point towards the recognition of a real corticotroph-like phenotype of ACTH-producing LuNETs, that is not a feature of ACTH-producing PanNETs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Carcinoma Neuroendocrino , Síndrome de Cushing , Neoplasias Pulmonares , Tumores Neuroendocrinos , Feocromocitoma , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Humanos , Hormona Adrenocorticotrópica/metabolismo , Neoplasias Pulmonares/metabolismo , Páncreas/patología , Hipófisis/patología , Neoplasias Hipofisarias/patología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo
3.
ACS Nanosci Au ; 2(4): 355-366, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35996436

RESUMEN

Nanoparticle-based drug delivery systems have the potential for increasing the efficiency of chemotherapeutics by enhancing the drug accumulation at specific target sites, thereby reducing adverse side effects and mitigating patient acquired resistance. In particular, photo-responsive nanomaterials have attracted much interest due to their ability to release molecular cargos on demand upon light irradiation. In some settings, they can also provide complementary information by optical imaging on the (sub)cellular scale. We herein present a system based on lithium niobate harmonic nanoparticles (LNO HNPs) for the decoupled multi-harmonic cell imaging and near-infrared light-triggered delivery of an erlotinib derivative (ELA) for the treatment of epidermal growth factor receptor (EGFR)-overexpressing carcinomas. The ELA cargo was covalently conjugated to the surface of silica-coated LNO HNPs through a coumarinyl photo-cleavable linker, achieving a surface loading of the active molecule of 27 nmol/mg NPs. The resulting nanoconjugates (LNO-CM-ELA NPs) were successfully imaged upon pulsed laser excitation at 1250 nm in EGFR-overexpressing human prostate cancer cells DU145 by detecting the second harmonic emission at 625 nm, in the tissue transparency window. Tuning the laser at 790 nm resulted in the uncaging of the ELA cargo as a result of the second harmonic emission of the inorganic HNP core at 395 nm. This protocol induced a significant growth inhibition in DU145 cells, which was only observed upon specific irradiation at 790 nm, highlighting the promising capabilities of LNO-CM-ELA NPs for theranostic applications.

4.
Cardiovasc Res ; 118(2): 573-584, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576779

RESUMEN

AIMS: Angiotensin (Ang) II signalling has been suggested to promote cardiac fibrosis in inflammatory heart diseases; however, the underlying mechanisms remain obscure. Using Agtr1a-/- mice with genetic deletion of angiotensin receptor type 1 (ATR1) and the experimental autoimmune myocarditis (EAM) model, we aimed to elucidate the role of Ang II-ATR1 pathway in development of heart-specific autoimmunity and post-inflammatory fibrosis. METHODS AND RESULTS: EAM was induced in wild-type (WT) and Agtr1a-/- mice by subcutaneous injections with alpha myosin heavy chain peptide emulsified in complete Freund's adjuvant. Agtr1a-/- mice developed myocarditis to a similar extent as WT controls at day 21 but showed reduced fibrosis and better systolic function at day 40. Crisscross bone marrow chimaera experiments proved that ATR1 signalling in the bone marrow compartment was critical for cardiac fibrosis. Heart infiltrating, bone-marrow-derived cells produced Ang II, but lack of ATR1 in these cells reduced transforming growth factor beta (TGF-ß)-mediated fibrotic responses. At the molecular level, Agtr1a-/- heart-inflammatory cells showed impaired TGF-ß-mediated phosphorylation of Smad2 and TAK1. In WT cells, TGF-ß induced formation of RhoA-GTP and RhoA-A-kinase anchoring protein-Lbc (AKAP-Lbc) complex. In Agtr1a-/- cells, stabilization of RhoA-GTP and interaction of RhoA with AKAP-Lbc were largely impaired. Furthermore, in contrast to WT cells, Agtr1a-/- cells stimulated with TGF-ß failed to activate canonical Wnt pathway indicated by suppressed activity of glycogen synthase kinase-3 (GSK-3)ß and nuclear ß-catenin translocation and showed reduced expression of Wnts. In line with these in vitro findings, ß-catenin was detected in inflammatory regions of hearts of WT, but not Agtr1a-/- mice and expression of canonical Wnt1 and Wnt10b were lower in Agtr1a-/- hearts. CONCLUSION: Ang II-ATR1 signalling is critical for development of post-inflammatory fibrotic remodelling and dilated cardiomyopathy. Our data underpin the importance of Ang II-ATR1 in effective TGF-ß downstream signalling response including activation of profibrotic Wnt/ß-catenin pathway.


Asunto(s)
Angiotensina II/metabolismo , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Linfocitos T CD4-Positivos/metabolismo , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Vía de Señalización Wnt , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Ratones Endogámicos BALB C , Ratones Noqueados , Miocarditis/genética , Miocarditis/inmunología , Miocarditis/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Receptor de Angiotensina Tipo 1/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Cells ; 10(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34831084

RESUMEN

Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Cardiotónicos/metabolismo , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Animales Recién Nacidos , Apoptosis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrocardiografía , Fibrosis , Eliminación de Gen , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Nano Lett ; 20(12): 8725-8732, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231075

RESUMEN

Whereas most of the reports on the nonlinear properties of micro- and nanostructures address the generation of distinct signals, such as second or third harmonic, here we demonstrate that the novel generation of dual output lasers recently developed for microscopy can readily increase the accessible parameter space and enable the simultaneous excitation and detection of multiple emission orders such as several harmonics and signals stemming from various sum and difference frequency mixing processes. This rich response, which in our case features 10 distinct emissions and encompasses the whole spectral range from the deep ultraviolet to the short-wave infrared region, is demonstrated using various nonlinear oxide nanomaterials while being characterized and simulated temporally and spectrally. Notably, we show that the response is conserved when the particles are embedded in biological media opening the way to novel biolabeling and phototriggering strategies.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Rayos Láser , Óxidos
7.
Biochem Soc Trans ; 47(5): 1341-1353, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31671182

RESUMEN

Cardiac stress initiates a pathological remodeling process that is associated with cardiomyocyte loss and fibrosis that ultimately leads to heart failure. In the injured heart, a pathologically elevated synthesis of reactive oxygen species (ROS) is the main driver of oxidative stress and consequent cardiomyocyte dysfunction and death. In this context, the cAMP-dependent protein kinase (PKA) plays a central role in regulating signaling pathways that protect the heart against ROS-induced cardiac damage. In cardiac cells, spatiotemporal regulation of PKA activity is controlled by A-kinase anchoring proteins (AKAPs). This family of scaffolding proteins tether PKA and other transduction enzymes at subcellular microdomains where they can co-ordinate cellular responses regulating oxidative stress. In this review, we will discuss recent literature illustrating the role of PKA and AKAPs in modulating the detrimental impact of ROS production on cardiac function.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849374

RESUMEN

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Línea Celular , Proteína Coatómero/metabolismo , Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/fisiología , Femenino , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Células HeLa , Humanos , Masculino , Pliegue de Proteína , Transporte de Proteínas , Proteostasis/fisiología , Transducción de Señal
9.
Cells ; 9(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888098

RESUMEN

Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix. Uncontrolled myofibroblast activation can thus promote heart stiffness, cardiac dysfunction, arrhythmias, and progression to heart failure. Despite the well-established role of myofibroblasts in mediating cardiac disease, our current knowledge on how signaling pathways promoting fibrosis are regulated and coordinated in this cell type is largely incomplete. In this respect, cyclic adenosine monophosphate (cAMP) signaling acts as a major modulator of fibrotic responses activated in fibroblasts of injured or stressed hearts. In particular, accumulating evidence now suggests that upstream cAMP modulators including G protein-coupled receptors, adenylyl cyclases (ACs), and phosphodiesterases (PDEs); downstream cAMP effectors such as protein kinase A (PKA) and the guanine nucleotide exchange factor Epac; and cAMP signaling organizers such as A-kinase anchoring proteins (AKAPs) modulate a variety of fundamental cellular processes involved in myocardial fibrosis including myofibroblast differentiation, proliferation, collagen secretion, and invasiveness. The current review will discuss recent advances highlighting the role of cAMP and AKAP-mediated signaling in regulating pathophysiological responses controlling cardiac fibrosis.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , AMP Cíclico/metabolismo , Susceptibilidad a Enfermedades , Miocitos Cardíacos/metabolismo , Transducción de Señal , Animales , Biomarcadores , Cardiomiopatías/patología , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica , Humanos
10.
J Cardiovasc Dev Dis ; 5(1)2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29419761

RESUMEN

Heart failure is a lethal disease that can develop after myocardial infarction, hypertension, or anticancer therapy. In the damaged heart, loss of function is mainly due to cardiomyocyte death and associated cardiac remodeling and fibrosis. In this context, A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that facilitate the spatiotemporal activation of the cyclic adenosine monophosphate (AMP)-dependent protein kinase (PKA) and other transduction enzymes involved in cardiac remodeling. AKAP-Lbc, a cardiac enriched anchoring protein, has been shown to act as a key coordinator of the activity of signaling pathways involved in cardiac protection and remodeling. This review will summarize and discuss recent advances highlighting the role of the AKAP-Lbc signalosome in orchestrating adaptive responses in the stressed heart.

11.
Cell Signal ; 40: 143-155, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28927666

RESUMEN

Cancer development is a multifactorial process resulting from the aberrant activation of multiple signaling pathways. It has become increasingly clear that the coordination of the signaling events leading to cancer formation and progression is under the control of macromolecular transduction complexes organized by scaffolding proteins. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins involved in the spatio-temporal activation of pathways controlling cancer cell proliferation, cell survival, and invasion. Mutations or altered expression of AKAP coding genes results in unregulated signaling associated with oncogenesis, cancer maintenance, and metastasis. This review will focus on recent advances illustrating the role of AKAPs in cancer pathophysiology as well as on their potential as therapeutic targets.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Carcinogénesis/genética , Neoplasias/genética , Proliferación Celular/genética , Humanos , Invasividad Neoplásica/genética , Neoplasias/patología , Transducción de Señal/genética
12.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2336-2346, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28923249

RESUMEN

Doxorubicin (DOX) is a chemotherapic agent that is widely used to treat hematological and solid tumors. Despite its efficacy, DOX displays significant cardiac toxicity associated with cardiomyocytes death and heart failure. Cardiac toxicity is mainly associated with the ability of DOX to alter mitochondrial function. The current lack of treatments to efficiently prevent DOX cardiotoxicity underscores the need of new therapeutic approaches. Our current findings show that stimulation of cardiomyocytes with the α1-adrenergic receptor (AR) agonist phenylephrine (PE) significantly inhibits the apoptotic effect of DOX. Importantly, our results indicate that AKAP-Lbc is critical for transducing protective signals downstream of α1-ARs. In particular, we could show that suppression of AKAP-Lbc expression by infecting primary cultures of ventricular myocytes with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly impairs the ability of PE to reduce DOX-induced apoptosis. AKAP-Lbc-mediated cardiomyocyte protection requires the activation of anchored protein kinase D1 (PKD1)-dependent prosurvival pathways that promote the expression of the anti-apoptotic protein Bcl2 and inhibit the translocation of the pro-apoptotic protein Bax to mitochondria. In conclusion, AKAP-Lbc emerges as a coordinator of signals that protect cardiomyocytes against the toxic effects of DOX.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Apoptosis/efectos de los fármacos , Doxorrubicina/efectos adversos , Antígenos de Histocompatibilidad Menor/genética , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Lentivirus/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Fenilefrina/administración & dosificación , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Cell Chem Biol ; 23(9): 1135-1146, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27593112

RESUMEN

Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Unión al GTP rho/metabolismo
14.
Cardiovasc Res ; 110(1): 73-84, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26857418

RESUMEN

AIMS: The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. METHODS AND RESULTS: Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. CONCLUSIONS: This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.


Asunto(s)
Proliferación Celular/genética , Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Cicatrización de Heridas/genética , Animales , Ciclo Celular , Perfilación de la Expresión Génica/métodos , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos Cardíacos/fisiología , Regeneración , Pez Cebra
15.
Biochim Biophys Acta ; 1863(7 Pt B): 1926-36, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26643253

RESUMEN

Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/enzimología , Músculo Liso Vascular/enzimología , Miocitos Cardíacos/enzimología , Miocitos del Músculo Liso/enzimología , Animales , Presión Sanguínea , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos Cardíacos/patología , Miocitos del Músculo Liso/patología , Transducción de Señal , Remodelación Vascular , Remodelación Ventricular
16.
Cell Signal ; 27(10): 1984-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169957

RESUMEN

Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Receptores Adrenérgicos alfa 1/fisiología , Animales , Humanos , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Remodelación Ventricular
17.
Biochim Biophys Acta ; 1843(2): 335-45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24269843

RESUMEN

In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Ventrículos Cardíacos/patología , Transducción de Señal , Actinas/metabolismo , Angiotensina II/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Colágeno/biosíntesis , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibrosis , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Silenciador del Gen/efectos de los fármacos , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fenotipo , Ratas , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
18.
Mol Cell Biol ; 33(15): 2903-17, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716597

RESUMEN

In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Cardiomegalia/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
Mol Cell Biol ; 33(1): 14-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23090968

RESUMEN

In response to stress, the heart undergoes a pathological remodeling process associated with hypertrophy and the reexpression of a fetal gene program that ultimately causes cardiac dysfunction and heart failure. In this study, we show that A-kinase-anchoring protein (AKAP)-Lbc and the inhibitor of NF-κB kinase subunit ß (IKKß) form a transduction complex in cardiomyocytes that controls the production of proinflammatory cytokines mediating cardiomyocyte hypertrophy. In particular, we can show that activation of IKKß within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukin-6 (IL-6), which in turn enhances fetal gene expression and cardiomyocyte growth. These findings provide a new mechanistic hypothesis explaining how hypertrophic signals are coordinated and conveyed to interleukin-mediated transcriptional reprogramming events in cardiomyocytes.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasa I-kappa B/metabolismo , Interleucina-6/metabolismo , Miocitos Cardíacos/patología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Hipertrofia/metabolismo , Quinasa I-kappa B/genética , Ratones , Antígenos de Histocompatibilidad Menor , Mutación , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
20.
Biochim Biophys Acta ; 1833(4): 901-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22889610

RESUMEN

In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Cardiomegalia/metabolismo , Hipoxia/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Adaptación Fisiológica , Cardiomegalia/genética , Cardiomegalia/patología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Unión Proteica , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA