Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667149

RESUMEN

The resazurin assay, also known as the Alamar Blue assay, stands as a cornerstone technique in cell biology, microbiology, and drug development. It assesses the viability of cells through the conversion of resazurin into highly fluorescent resorufin. The resulting fluorescence intensity provides a reliable estimate of viable cell numbers. Cytotoxicity assays, such as the resazurin-based method, play a crucial role in the screening of potential drug candidates and in the assessment of pharmaceutical and chemical toxicity. In recent years, inconsistencies have arisen in pharmacogenomic studies, often due to poorly optimized laboratory protocols. These inconsistencies hinder progress in understanding how substances affect cell health, leading to unreliable findings. Thus, the need for standardized and rigorously optimized protocols is evident to ensure consistent and accurate results in cytotoxicity studies. This manuscript describes a standardized procedure for optimizing resazurin-based viability assays to improve the reliability of cytotoxicity data. This optimization approach focuses on critical experimental parameters and data quality, aiming to achieve a level of measurement imprecision of less than 20%. In conclusion, to address the critical issues of reproducibility and reliability, protocol standardization, such as the one described in this manuscript, can greatly enhance the credibility of cytotoxicity studies, ultimately advancing drug safety assessments.


Asunto(s)
Supervivencia Celular , Oxazinas , Xantenos , Supervivencia Celular/efectos de los fármacos , Humanos , Bioensayo/métodos , Reproducibilidad de los Resultados
2.
Nanoscale ; 16(4): 1711-1723, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38087911

RESUMEN

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields. To achieve this goal, Fe3O4 nanoparticles were employed to decorate and induce the magnetic vaporization of OLNDs, allowing oxygen release. We present an optimized method for preparing MOLNDs by decorating nanodroplets made of diverse fluorocarbon cores and polymeric coatings. Furthermore, we performed a series of characterizations for better understanding how magnetic decoration can influence the physicochemical properties of OLNDs. Our comprehensive analysis demonstrates the efficacy of magnetic stimulation in promoting oxygen release compared to conventional ultrasound-based methods. We emphasize the critical role of selecting the appropriate fluorocarbon core and polymeric coating to optimize the decoration process and enhance the oxygen release performance of MOLNDs.


Asunto(s)
Fluorocarburos , Nanopartículas , Oxígeno , Sistemas de Liberación de Medicamentos , Ultrasonografía , Nanopartículas/química , Polímeros , Fluorocarburos/química , Fenómenos Magnéticos
3.
Adv Healthc Mater ; 13(4): e2301481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37941521

RESUMEN

Cardiac fibrosis is one of the main causes of heart failure, significantly contributing to mortality. The discovery and development of effective therapies able to heal fibrotic pathological symptoms thus remain of paramount importance. Micro-physiological systems (MPS) are recently introduced as promising platforms able to accelerate this finding. Here a 3D in vitro model of human cardiac fibrosis, named uScar, is developed by imposing a cyclic mechanical stimulation to human atrial cardiac fibroblasts (AHCFs) cultured in a 3D beating heart-on-chip and exploited to screen drugs and advanced therapeutics. The sole provision of a cyclic 10% uniaxial strain at 1 Hz to the microtissues is sufficient to trigger fibrotic traits, inducing a consistent fibroblast-to-myofibroblast transition and an enhanced expression and production of extracellular matrix (ECM) proteins. Standard of care anti-fibrotic drugs (i.e., Pirfenidone and Tranilast) are confirmed to be efficient in preventing the onset of fibrotic traits in uScar. Conversely, the mechanical stimulation applied to the microtissues limit the ability of a miRNA therapy to directly reprogram fibroblasts into cardiomyocytes (CMs), despite its proved efficacy in 2D models. Such results demonstrate the importance of incorporating in vivo-like stimulations to generate more representative 3D in vitro models able to predict the efficacy of therapies in patients.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo , Fibrosis , Fibroblastos/metabolismo , Miofibroblastos/patología , Proteínas de la Matriz Extracelular/metabolismo , Miocardio/metabolismo
4.
Clin Chem Lab Med ; 61(12): 2084-2093, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37540644

RESUMEN

The total testing process harmonization is central to laboratory medicine, leading to the laboratory test's effectiveness. In this opinion paper the five phases of the TTP are analyzed, describing, and summarizing the critical issues that emerged in each phase of the TTP with the SARS-CoV-2 serological tests that have affected their effectiveness. Testing and screening the population was essential for defining seropositivity and, thus, driving public health policies in the management of the COVID-19 pandemic. However, the many differences in terminology, the unit of measurement, reference ranges and parameters for interpreting results make analytical results difficult to compare, leading to the general confusion that affects or completely precludes the comparability of data. Starting from these considerations related to SARS-CoV-2 serological tests, through interdisciplinary work, the authors have highlighted the most critical points and formulated proposals to make total testing process harmonization effective, positively impacting the diagnostic effectiveness of laboratory tests.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Prueba de COVID-19 , Pruebas Serológicas/métodos , Anticuerpos Antivirales
5.
Front Bioeng Biotechnol ; 10: 983872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507252

RESUMEN

In vitro models of pathological cardiac tissue have attracted interest as predictive platforms for preclinical validation of therapies. However, models reproducing specific pathological features, such as cardiac fibrosis size (i.e., thickness and width) and stage of development are missing. This research was aimed at engineering 2D and 3D models of early-stage post-infarct fibrotic tissue (i.e., characterized by non-aligned tissue organization) on bioartificial scaffolds with biomimetic composition, design, and surface stiffness. 2D scaffolds with random nanofibrous structure and 3D scaffolds with 150 µm square-meshed architecture were fabricated from polycaprolactone, surface-grafted with gelatin by mussel-inspired approach and coated with cardiac extracellular matrix (ECM) by 3 weeks culture of human cardiac fibroblasts. Scaffold physicochemical properties were thoroughly investigated. AFM analysis of scaffolds in wet state, before cell culture, confirmed their close surface stiffness to human cardiac fibrotic tissue. Following 3 weeks culture, biomimetic biophysical and biochemical scaffold properties triggered the activation of myofibroblast phenotype. Upon decellularization, immunostaining, SEM and two-photon excitation fluorescence microscopy showed homogeneous decoration of both 2D and 3D scaffolds with cardiac ECM. The versatility of the approach was demonstrated by culturing ventricular or atrial cardiac fibroblasts on scaffolds, thus suggesting the possibility to use the same scaffold platforms to model both ventricular and atrial cardiac fibrosis. In the future, herein developed in vitro models of cardiac fibrotic tissue, reproducing specific pathological features, will be exploited for a fine preclinical tuning of therapies.

6.
Methods Mol Biol ; 2573: 31-40, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040584

RESUMEN

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) through microRNAs (miRNAs) is a new emerging strategy for myocardial regeneration after ischemic heart disease. Previous studies have reported that murine fibroblasts can be directly reprogrammed into iCMs by transient transfection with four miRNAs (miRs-1, 133, 208 and 499 - termed "miRcombo"). While advancement in the knowledge of direct cell reprogramming molecular mechanism is in progress, it is important to investigate if this strategy may be translated to humans. Recently, we demonstrated that miRcombo transfection is able to induce direct reprogramming of adult human cardiac fibroblasts (AHCFs) into iCMs. Although additional studies are needed to achieve iCM maturation, our early findings pave the way toward new therapeutic strategies for cardiac regeneration in humans. This chapter describes methods for inducing direct reprogramming of AHCFs into iCMs through miRcombo transient transfection, showing experiments to perform for assessing iCM generation.


Asunto(s)
MicroARNs , Miocitos Cardíacos , Animales , Reprogramación Celular/genética , Fibroblastos , Humanos , Ratones , MicroARNs/genética , Transfección
7.
Nanomedicine ; 45: 102589, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908737

RESUMEN

Design of nanocarriers for efficient miRNA delivery can significantly improve miRNA-based therapies. Lipoplexes based on helper lipid, dioleoyl phosphatidylethanolamine (DOPE) and cationic lipid [2-(2,3-didodecyloxypropyl)-hydroxyethyl] ammonium bromide (DE) were formulated to efficiently deliver miR-1 or a combination of four microRNAs (miRcombo) to adult human cardiac fibroblasts (AHCFs). Lipoplexes with amino-to-phosphate groups ratio of 3 (N/P 3) showed nanometric hydrodynamic size (372 nm), positive Z-potential (40 mV) and high stability under storage conditions. Compared to commercial DharmaFECT1 (DF), DE-DOPE/miRNA lipoplexes showed superior miRNA loading efficiency (99 % vs. 64 %), and faster miRNA release (99 % vs. 82 % at 48 h). DE-DOPE/miR-1 lipoplexes showed superior viability (80-100 % vs. 50 %) in AHCFs, a 2-fold higher miR-1 expression and Twinfilin-1 (TWF-1) mRNA downregulation. DE-DOPE/miRcombo lipoplexes significantly enhanced AHCFs reprogramming into induced cardiomyocytes (iCMs), as shown by increased expression of CM markers compared to DF/miRcombo.


Asunto(s)
Liposomas , MicroARNs , Reprogramación Celular , Fibroblastos , Humanos , MicroARNs/genética , Fosfatos , Fosfatidiletanolaminas , ARN Mensajero , Transfección
8.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269422

RESUMEN

The restoration of cardiac functionality after myocardial infarction represents a major clinical challenge. Recently, we found that transient transfection with microRNA combination (miRcombo: miR-1, miR-133, miR-208 and 499) is able to trigger direct reprogramming of adult human cardiac fibroblasts (AHCFs) into induced cardiomyocytes (iCMs) in vitro. However, achieving efficient direct reprogramming still remains a challenge. The aim of this study was to investigate the influence of cardiac tissue-like biochemical and biophysical stimuli on direct reprogramming efficiency. Biomatrix (BM), a cardiac-like extracellular matrix (ECM), was produced by in vitro culture of AHCFs for 21 days, followed by decellularization. In a set of experiments, AHCFs were transfected with miRcombo and then cultured for 2 weeks on the surface of uncoated and BM-coated polystyrene (PS) dishes and fibrin hydrogels (2D hydrogel) or embedded into 3D fibrin hydrogels (3D hydrogel). Cell culturing on BM-coated PS dishes and in 3D hydrogels significantly improved direct reprogramming outcomes. Biochemical and biophysical cues were then combined in 3D fibrin hydrogels containing BM (3D BM hydrogel), resulting in a synergistic effect, triggering increased CM gene and cardiac troponin T expression in miRcombo-transfected AHCFs. Hence, biomimetic 3D culture environments may improve direct reprogramming of miRcombo-transfected AHCFs into iCMs, deserving further study.


Asunto(s)
MicroARNs , Fibrina/metabolismo , Fibroblastos/metabolismo , Humanos , Hidrogeles/farmacología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
10.
Cytometry B Clin Cytom ; 96(6): 508-513, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30790450

RESUMEN

BACKGROUND: Over 2,000 people a year in the United Kingdom need a bone marrow or blood stem cell transplant. It is important to accurately quantify the hematopoietic stem cells to predict whether the transplant will be successful in replenishing the immune system. However, they are present at low frequency, which complicates accurate quantification. The current gold standard method is single-platform flow cytometry using internal reference counting beads to determine the concentration of CD34 cells. However, volumetric flow cytometers have the ability to measure the acquisition volume, which removes the need for reference beads for calculation of cell concentrations. METHOD: In this study, we compared both methods for calculating CD34 cell concentrations in volumetric cytometers, using either the volume reading or the number of reference beads for calculation. In addition, the uncertainty of measurement for each method was estimated. RESULTS: The results show that both methods have similar uncertainties of measurement. Regression analysis showed low to no statistical difference in CD34 cell concentrations obtained with each method. CONCLUSIONS: Overall, this study suggests that the volumetric method is a valid approach but that the adoption of this technology may be hindered without some form of external calibration of volume readings to increase confidence in the measurement. © 2019 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.


Asunto(s)
Antígenos CD34/análisis , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Recuento de Células , Humanos , Análisis de Regresión
11.
Artículo en Inglés | MEDLINE | ID: mdl-31993416

RESUMEN

The symptomatic irreproducibility of data in biomedicine and biotechnology prompts the need for higher order measurements of cells in their native and near-native environments. Such measurements may support the adoption of new technologies as well as the development of research programs across different sectors including healthcare and clinic, environmental control and national security. With an increasing demand for reliable cell-based products and services, cellular metrology is poised to help address current and emerging measurement challenges faced by end-users. However, metrological foundations in cell analysis remain sparse and significant advances are necessary to keep pace with the needs of modern medicine and industry. Herein we discuss a role of metrology in cell and cell-related R&D activities to underpin growing international measurement capabilities. Relevant measurands are outlined and the lack of reference methods and materials, particularly those based on functional cell responses in native environments, is highlighted. The status quo and current challenges in cellular measurements are discussed in the light of metrological traceability in cell analysis and applications (e.g., a functional cell count). An emphasis is made on the consistency of measurement results independent of the analytical platform used, high confidence in data quality vs. quantity, scale of measurements and issues of building infrastructure for end-users.

12.
Cells ; 7(9)2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134618

RESUMEN

The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.

13.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29903874

RESUMEN

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Medicina de Precisión , Variaciones en el Número de Copia de ADN , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados
14.
Anal Bioanal Chem ; 409(28): 6689-6697, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28921124

RESUMEN

Accurate and precise nucleic-acid quantification is crucial for clinical and diagnostic decisions, as overestimation or underestimation can lead to misguided treatment of a disease or incorrect labelling of the products. Digital PCR is one of the best tools for absolute nucleic-acid copy-number determination. However, digital PCR needs to be well characterised in terms of accuracy and sources of uncertainty. With droplet digital PCR, discrepancies between the droplet volume assigned by the manufacturer and measured by independent laboratories have already been shown in previous studies. In the present study, we report on the results of an inter-laboratory comparison of different methods for droplet volume determination that is based on optical microscopy imaging and is traceable to the International System of Units. This comparison was conducted on the same DNA material, with the examination of the influence of parameters such as droplet generators, supermixes, operators, inter-cartridge and intra-cartridge variability, and droplet measuring protocol. The mean droplet volume was measured using a QX200™ AutoDG™ Droplet Digital™ PCR system and two QX100™ Droplet Digital™ PCR systems. The data show significant volume differences between these two systems, as well as significant differences in volume when different supermixes are used. We also show that both of these droplet generator systems produce droplets with significantly lower droplet volumes (13.1%, 15.9%, respectively) than stated by the manufacturer and previously measured by other laboratories. This indicates that to ensure precise quantification, the droplet volumes should be assessed for each system.


Asunto(s)
ADN/análisis , Reacción en Cadena de la Polimerasa/métodos , Análisis de Varianza , ADN/genética , Procesamiento de Imagen Asistido por Computador , Microscopía , Imagen Óptica , Reacción en Cadena de la Polimerasa/instrumentación , Tamaño de la Muestra , Programas Informáticos
15.
Future Sci OA ; 1(4): FSO58, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28031911

RESUMEN

BACKGROUND: In cell-based therapies, in vitro studies on biomimetic cell-scaffold constructs can facilitate the determination of the cell dose, a key factor in guaranteeing the effectiveness of the treatment. However, highly porous scaffolds do not allow a nondestructive evaluation of the cell number. Our objective was to develop a nondestructive method for human mesenchymal stem cells dose evaluation in a highly porous scaffold for bone regeneration. MATERIALS & MEASUREMENT METHOD: Proliferation trend of human mesenchymal stem cells on Biocoral® scaffolds was measured by a resazurin-based assay here optimized for 3D cultures. The method allows to noninvasively follow the cell proliferation on biocorals over 3 weeks with very high reproducibility. CONCLUSION: This reliable method could be a powerful tool in cell-based therapies for cell dose determination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...