Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 11(6): 777-791, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37040466

RESUMEN

High levels of IL1ß can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1ß could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1ß blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFß treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1ß blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1ß alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1ß inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1ß blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1ß inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.


Asunto(s)
Interleucina-1beta , Neoplasias , Microambiente Tumoral , Animales , Ratones , Línea Celular Tumoral , Docetaxel/farmacología , Inmunidad , Inmunoterapia , Neoplasias/tratamiento farmacológico , Interleucina-1beta/antagonistas & inhibidores
2.
Nat Commun ; 11(1): 6315, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298926

RESUMEN

Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFß in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFß and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Fibroblastos Asociados al Cáncer/inmunología , Carcinoma/tratamiento farmacológico , Interferón beta/inmunología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinoma/inmunología , Carcinoma/patología , Línea Celular Tumoral/trasplante , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/inmunología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
3.
Front Immunol ; 10: 275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846987

RESUMEN

Objective: Plasmacytoid dendritic cells (pDCs) are a major source of Type-I Interferon (IFN-I), a key driver in cutaneous lupus erythematosus (CLE). Currently evaluated in Phase II clinical trial, 24F4A (BIIB059) is an antibody targeting BDCA2, an inhibitory receptor expressed on pDCs. Given that Hydroxychloroquine (HCQ), a widely-used CLE therapy, and 24F4A are both able to inhibit pDC-derived IFN-I production; this study aimed to determine whether 24F4A would show an additional inhibitory effect on pDC response after ex vivo or in vivo treatment with HCQ. Methods: The effect of 24F4A on pDC-derived IFNα was measured from peripheral blood mononuclear cells (PBMC) either from healthy donors in presence or absence of HCQ or from CLE patients clinically exposed to various levels of HCQ. TLR7, TLR7/8, and TLR9 agonists (ssRNA, R848, and CpG-A) were used for pDC stimulation. Results: PDCs were the only producers of IFNα in response to CpG-A, R848, and ssRNA stimulation in PBMC cultures. CLE patients with higher levels of blood HCQ showed lower ex vivo pDC responses to CpG-A, but not R848 or ssRNA. In contrast, 24F4A reduced the amount of IFNα produced by pDCs from CLE patients in response to all TLR agonists, irrespective of the blood HCQ level. Conclusion: Our findings reveal that clinically-relevant HCQ concentrations partially inhibit the pDC response to TLR9 and weakly affect the response to TLR7/8 stimulation. 24F4A robustly inhibits pDC responses even in the presence of HCQ, highlighting its unique potential to disrupt pDC disease relevant biology, which could provide additional therapeutic benefit for CLE patients.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Células Dendríticas/efectos de los fármacos , Hidroxicloroquina/uso terapéutico , Interferón-alfa/metabolismo , Lectinas Tipo C/metabolismo , Lupus Eritematoso Cutáneo/tratamiento farmacológico , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Adulto , Células Dendríticas/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Cutáneo/metabolismo , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/metabolismo , Masculino , Persona de Mediana Edad , Receptores Toll-Like/metabolismo
4.
Mol Ther ; 26(8): 1983-1995, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29914758

RESUMEN

Primary hyperoxalurias (PHs) are autosomal recessive disorders caused by the overproduction of oxalate leading to calcium oxalate precipitation in the kidney and eventually to end-stage renal disease. One promising strategy to treat PHs is to reduce the hepatic production of oxalate through substrate reduction therapy by inhibiting liver-specific glycolate oxidase (GO), which controls the conversion of glycolate to glyoxylate, the proposed main precursor to oxalate. Alternatively, diminishing the amount of hepatic lactate dehydrogenase (LDH) expression, the proposed key enzyme responsible for converting glyoxylate to oxalate, should directly prevent the accumulation of oxalate in PH patients. Using RNAi, we provide the first in vivo evidence in mammals to support LDH as the key enzyme responsible for converting glyoxylate to oxalate. In addition, we demonstrate that reduction of hepatic LDH achieves efficient oxalate reduction and prevents calcium oxalate crystal deposition in genetically engineered mouse models of PH types 1 (PH1) and 2 (PH2), as well as in chemically induced PH mouse models. Repression of hepatic LDH in mice did not cause any acute elevation of circulating liver enzymes, lactate acidosis, or exertional myopathy, suggesting further evaluation of liver-specific inhibition of LDH as a potential approach for treating PH1 and PH2 is warranted.


Asunto(s)
Hiperoxaluria Primaria/terapia , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Oxalatos/metabolismo , Interferencia de ARN/fisiología , Animales , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , L-Lactato Deshidrogenasa/genética , Hígado/enzimología , Ratones
5.
Mol Ther ; 26(7): 1771-1782, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784585

RESUMEN

Glycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III. Mechanistically, reduction of accumulated abnormally structured glycogen prevents proliferation of hepatocytes and activation of myofibroblasts as well as infiltration of mononuclear cells. Additionally, we show that silencing Gys2 expression reduces hepatic steatosis in a mouse model of GSD type Ia, where we hypothesize that the reduction of glycogen also reduces the production of excess glucose-6-phosphate and its subsequent diversion to lipid synthesis. Our results support therapeutic silencing of GYS2 expression to prevent glycogen and lipid accumulation, which mediate initial signals that subsequently trigger cascades of long-term liver injury in GSDs.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Glucógeno Sintasa/genética , Glucógeno/genética , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Hígado/patología , Interferencia de ARN/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Glucosa-6-Fosfato/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/patología , Hepatocitos/patología , Hepatomegalia/genética , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Mol Ther ; 24(4): 770-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26758691

RESUMEN

Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxalato de Calcio/metabolismo , Hiperoxaluria Primaria/terapia , ARN Interferente Pequeño/administración & dosificación , Animales , ARN Helicasas DEAD-box/metabolismo , Modelos Animales de Enfermedad , Glioxilatos/orina , Humanos , Hiperoxaluria Primaria/enzimología , Hiperoxaluria Primaria/orina , Hígado/metabolismo , Ratones , Nanopartículas/química , ARN Interferente Pequeño/farmacología , Ribonucleasa III/metabolismo
7.
Mol Ther ; 22(1): 92-101, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24089139

RESUMEN

Despite progress in identifying molecular drivers of cancer, it has been difficult to translate this knowledge into new therapies, because many of the causal proteins cannot be inhibited by conventional small molecule therapeutics. RNA interference (RNAi), which uses small RNAs to inhibit gene expression, provides a promising alternative to reach traditionally undruggable protein targets by shutting off their expression at the messenger RNA (mRNA) level. Challenges for realizing the potential of RNAi have included identifying the appropriate genes to target and achieving sufficient knockdown in tumors. We have developed high-potency Dicer-substrate short-interfering RNAs (DsiRNAs) targeting ß-catenin and delivered these in vivo using lipid nanoparticles, resulting in significant reduction of ß-catenin expression in liver cancer models. Reduction of ß-catenin strongly reduced tumor burden, alone or in combination with sorafenib and as effectively as DsiRNAs that target mitotic genes such as PLK1 and KIF11. ß-catenin knockdown also strongly reduced the expression of ß-catenin-regulated genes, including MYC, providing a potential mechanism for tumor inhibition. These results validate ß-catenin as a target for liver cancer therapy and demonstrate the promise of RNAi in general and DsiRNAs in particular for reaching traditionally undruggable cancer targets.


Asunto(s)
Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ARN Interferente Pequeño/genética , beta Catenina/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Masculino , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
8.
Front Immunol ; 2: 27, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22566817

RESUMEN

Activation of immune cells is under control of immunological and physiological regulatory mechanisms to ensure adequate destruction of pathogens with the minimum collateral damage to "innocent" bystander cells. The concept of physiological negative regulation of immune response has been advocated based on the finding of the critical immunoregulatory role of extracellular adenosine. Local tissue oxygen tension was proposed to function as one of such physiological regulatory mechanisms of immune responses. In the current study, we utilized in vivo marker of local tissue hypoxia pimonidazole hydrochloride (Hypoxyprobe-1) in the flowcytometric analysis of oxygen levels to which lymphocytes are exposed in vivo. The level of exposure to hypoxia in vivo was low in B cells and the levels increased in the following order: T cells < NKT cells < NK cells. The thymus was more hypoxic than the spleen and lymph nodes, suggesting the variation in the degree of oxygenation among lymphoid organs and cell types in normal mice. Based on in vitro studies, tissue hypoxia has been assumed to be suppressive to T cell activation in vivo, but there was no direct evidence demonstrating that T cells exposed to hypoxic environment in vivo are less activated. We tested whether the state of activation of T cells in vivo changes due to their exposure to hypoxic tissue microenvironments. The parallel analysis of more hypoxic and less hypoxic T cells in the same mouse revealed that the degree of T cell activation was significantly stronger in better-oxygenated T cells. These observations suggest that the extent of T cell activation in vivo is dependent on their localization and is decreased in environment with low oxygen tension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...