Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 336: 118684, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127117

RESUMEN

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Factor 2 Relacionado con NF-E2 , Syzygium , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Syzygium/química , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células HEK293 , Estrés Oxidativo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Productos Finales de Glicación Avanzada/metabolismo , Estreptozocina , Ratas Wistar , Antioxidantes/farmacología , Ratas Sprague-Dawley
2.
Chembiochem ; 24(13): e202200755, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010799

RESUMEN

Metabolites orchestrate cellular processes as either substrates, co-enzymes, inhibitors, or activators of cellular proteins such as enzymes and receptors. Although traditional biochemical and structural biology-based approaches have been successfully employed for the discovery of protein-metabolite interactions, they often fail to detect transient and low-affinity biomolecular relationships. Another limitation of these approaches is that they are performed under in vitro conditions lacking the physiological context. Recently developed mass spectrometry-based methodologies overcome both these shortcomings, and have resulted in the discovery of global protein-metabolite cellular interaction networks. Herein, we describe traditional and modern approaches for the discovery of protein-metabolite interactions, and discuss the impact of these discoveries on our understanding of cellular physiology and on drug development.


Asunto(s)
Proteínas Portadoras , Proteínas , Proteínas/química , Proteínas Portadoras/metabolismo , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas
3.
ACS Chem Biol ; 17(8): 2272-2283, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35802552

RESUMEN

Choline is an essential nutrient for mammalian cells. Our understanding of the cellular functions of choline and its metabolites, independent of their roles as choline lipid metabolism intermediates, remains limited. In addition to fundamental cellular physiology, this knowledge has implications for cancer biology because elevated choline metabolite levels are a hallmark of cancer. Here, we establish a mammalian choline metabolite-interacting proteome by utilizing a photocrosslinkable choline probe. To design this probe, we performed metabolic labeling experiments with structurally diverse choline analogues that resulted in the serendipitous discovery of a choline lipid headgroup remodeling mechanism involving sequential dealkylation and methylation steps. We demonstrate that phosphocholine inhibits the binding of one of the proteins identified, the attractive anticancer target p32, to its endogenous ligands and to the promising p32-targeting anticancer agent, Lyp-1. Our results reveal that choline metabolites play vital roles in cellular physiology by serving as modulators of protein function.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Colina/metabolismo , Humanos , Mamíferos/metabolismo , Neoplasias/metabolismo , Fosforilcolina/metabolismo , Proteoma
4.
Cureus ; 13(12): e20094, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003950

RESUMEN

Cavernous sinus metastasis is a rare clinical finding, presenting most commonly with complaints of headache, diplopia, visual field defects, facial pain, and progressive neurological deficits. Many patients present with features of III, IV, and VI nerve palsies. We hereby report an unusual case of cavernous sinus metastasis from primary breast cancer in a 40-year-old female, who presented with binocular diplopia due to left VI nerve palsy as the first presenting complaint. The patient had a history of surgery for left breast cancer which was performed at another center. Contrast-enhanced computed tomography (CECT) scan of thorax and abdomen revealed a residual neoplastic left breast mass with satellite nodules, left axillary lymphadenopathy, and hepatic, splenic, and skeletal metastasis. Contrast-enhanced magnetic resonance imaging (CE-MRI) of brain and orbit showed enhancing lesion of 20 mm x 10 mm along the lateral wall of left cavernous sinus and left petrous apex. She was referred to radiation oncology department for further management. This case report highlights the importance of ophthalmologists in such life-threatening conditions, who may first present to them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA