Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 24(7): 1064-1076, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35787684

RESUMEN

The pancreas and liver arise from a common pool of progenitors. However, the underlying mechanisms that drive their lineage diversification from the foregut endoderm are not fully understood. To tackle this question, we undertook a multifactorial approach that integrated human pluripotent-stem-cell-guided differentiation, genome-scale CRISPR-Cas9 screening, single-cell analysis, genomics and proteomics. We discovered that HHEX, a transcription factor (TF) widely recognized as a key regulator of liver development, acts as a gatekeeper of pancreatic lineage specification. HHEX deletion impaired pancreatic commitment and unleashed an unexpected degree of cellular plasticity towards the liver and duodenum fates. Mechanistically, HHEX cooperates with the pioneer TFs FOXA1, FOXA2 and GATA4, shared by both pancreas and liver differentiation programmes, to promote pancreas commitment, and this cooperation restrains the shared TFs from activating alternative lineages. These findings provide a generalizable model for how gatekeeper TFs like HHEX orchestrate lineage commitment and plasticity restriction in broad developmental contexts.


Asunto(s)
Endodermo , Páncreas , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Páncreas/metabolismo , Factores de Transcripción
2.
Cell Rep ; 37(10): 110095, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879277

RESUMEN

Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Epigénesis Genética , Células Madre Embrionarias Humanas/enzimología , Oxigenasas de Función Mixta/metabolismo , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Troponina I/genética , Troponina I/metabolismo , Vía de Señalización Wnt/genética
3.
Science ; 372(6538)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833093

RESUMEN

DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Sistemas CRISPR-Cas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genoma Humano , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , ADN Metiltransferasa 3B
4.
Nat Genet ; 51(6): 999-1010, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110351

RESUMEN

Human embryonic stem cells (ESCs) and human induced pluripotent stem cells hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five Jun N-terminal kinase (JNK)-JUN family genes as key barriers of DE differentiation. The JNK-JUN pathway does not act through directly inhibiting the DE enhancers. Instead, JUN co-occupies ESC enhancers with OCT4, NANOG, SMAD2 and SMAD3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2 and SMAD3 chromatin binding from ESC to DE enhancers. Therefore, the JNK-JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Endodermo/embriología , Endodermo/metabolismo , Genoma , Genómica , Sistema de Señalización de MAP Quinasas , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Genómica/métodos , Humanos , Células Madre Pluripotentes Inducidas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Reproducibilidad de los Resultados , Proteínas Smad
5.
Nature ; 510(7503): 115-20, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24899310

RESUMEN

The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.


Asunto(s)
Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/genética , Cilios/genética , Cilios/fisiología , MicroARNs/genética , Morfogénesis/genética , Animales , Animales Recién Nacidos , Cuerpos Basales/metabolismo , Cuerpos Basales/patología , Cuerpos Basales/ultraestructura , Secuencia de Bases , Proteínas de Unión a Calmodulina/metabolismo , Centriolos/metabolismo , Cilios/patología , Cilios/ultraestructura , Epidermis/embriología , Epidermis/patología , Femenino , Infertilidad/genética , Infertilidad/fisiopatología , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Síndrome de Kartagener/fisiopatología , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Fenotipo , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Análisis de Supervivencia , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...