Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 11(19): 4980-4990, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34122954

RESUMEN

Thermal control in low-emission windows is achieved by the application of glazings, which are simultaneously optically transparent in the visible and reflective in the near-infrared (IR). This phenomenon is characteristic of coatings with wide optical band gaps that have high enough charge carrier concentrations for the material to interact with electromagnetic radiation in the IR region. While conventional low-E coatings are composed of sandwiched structures of oxides and thin Ag films or of fluorinated SnO2 coatings, ZnO-based glazing offers an environmentally stable and economical alternative with competitive optoelectronic properties. In this work, gallium-doped zinc oxide (GZO) coatings with properties for low-E coatings that exceed industrial standards (T visible > 82%; R 2500 nm > 90%; λ (plasma) = 1290 nm; ρ = 4.7 × 10-4 Ω cm; R sh = 9.4 Ω·â–¡-1) are deposited through a sustainable and environmentally friendly halogen-free deposition route from [Ga(acac)3] and a pre-organized zinc oxide precursor [EtZnOiPr]4 (1) via single-pot aerosol-assisted chemical vapor deposition. GZO films are highly (002)-textured, smooth and compact without need of epitaxial growth. The method herein describes the synthesis of coatings with opto-electronic properties commonly achievable only through high-vacuum methods, and provides an alternative to the use of pyrophoric ZnEt2 and halogenated SnO2 coatings currently used in low-emission glazing and photovoltaic technology.

2.
ACS Appl Electron Mater ; 1(8): 1408-1417, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32064464

RESUMEN

Low-cost, high-efficiency, and high quality Cl-doped ZnO (ZnO:Cl) thin films that can simultaneously function as transparent conducting oxides (TCOs) and photocatalysts are described. The films have been fabricated by a facile and inexpensive solution-source aerosol-assisted chemical vapor deposition technique using NH4Cl as an effective, cheap, and abundant source of Cl. Successful ClO substitutional doping in the ZnO films was evident from powder X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry results, while scanning electron microscopy reveals the impact of Cl doping on the ZnO thin film morphology. All ZnO:Cl films deposited were transparent and uncolored; optical transmittance in the visible region (400-700 nm) exceeded 80% for depositions using 5-20 mol % Cl. Optimal electrical properties were achieved when using 5 mol % Cl with a minimum measured resistivity of (2.72 ± 0.04) × 10-3 Ω·cm, in which the charge carrier concentration and mobility were measured at (8.58 ± 0.16) × 1019 cm-3 and 26.7 ± 0.1 cm2 V-1 s-1 respectively, corresponding to a sheet resistance (R sh) of 41.9 Ω□-1 at a thickness of 650 nm. In addition to transparent conducting properties, photocatalytic behavior of stearic acid degradation in the ZnO:Cl films was also observed with an optimal Cl concentration of 7 mol % Cl, with the highest formal quantum efficiency (ξ) measured at (1.63 ± 0.03) × 10-4 molecule/photon, while retaining a visible transparency of 80% and resistivity ρ = (9.23 ± 0.13) × 10-3 Ω·cm. The dual functionality of ZnO:Cl as both a transparent conductor and an efficient photocatalyst is a unique combination of properties making this a particularly unusual material.

3.
Adv Sci (Weinh) ; 5(1): 1700520, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375975

RESUMEN

In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials.

4.
ACS Appl Mater Interfaces ; 9(48): 42327-42335, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29116744

RESUMEN

Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently <1°. A rigorous sandpaper abrasion test demonstrated retention of superhydrophobic properties and superior robustness therein, while wear, anticorrosion (pH = 1-14, 72 h), and UV testing (365 nm, 3.7 mW/cm2, 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA