Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 341: 122889, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972679

RESUMEN

Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Reproducibilidad de los Resultados , Contaminación del Agua
2.
Chemosphere ; 336: 139291, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37353165

RESUMEN

This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Bacterias
3.
Environ Res ; 195: 110857, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33581088

RESUMEN

The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Plásticos/toxicidad , Factores Socioeconómicos , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 270: 128642, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33127105

RESUMEN

Biodiesel is a fuel that has numerous benefits over traditional petrodiesel. The transesterification process is the most popular method for biodiesel production from various sources, categorized as first, second and third generation biodiesel depending on the source. The transesterification process is subject to a variety of factors that can be taken into account to improve biodiesel yield. One of the factors is catalyst type and concentration, which plays a significant role in the transesterification of biodiesel sources. At present, chemical and biological catalysts are being investigated and each catalyst has its advantages and disadvantages. Recently, nanocatalysts have drawn researchers' attention to the efficient production of biodiesel. This article discusses recent work on the role of several nanocatalysts in the transesterification reaction of various sources in the development of biodiesel. A large number of literature from highly rated journals in scientific indexes is reviewed, including the most recent publications. Most of the authors reported that nanocatalysts show an important influence regarding activity and selectivity. This study highlights that in contrast to conventional catalysts, the highly variable surface area of nanostructure materials favours interaction between catalysts and substrates that efficiently boost the performance of products. Finally, this analysis provides useful information to researchers in developing and processing cost-effective biodiesel.


Asunto(s)
Biocombustibles , Aceites de Plantas , Catálisis , Esterificación
5.
Ultrasonics ; 53(6): 1089-96, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23523093

RESUMEN

Equal channel angular pressing (ECAP) is one of the most prominent procedures for achieving ultra-fine grain (UFG) structures among the various severe plastic deformation (SPD) techniques. In this study, the effect of ultrasonic vibration on deformation behavior of commercial pure aluminum in the ECAP process is analyzed successfully using three dimensional (3D) by finite element methods (FEMs). The investigation includes the effects of die geometry, billet length, friction factor, ram speed, ultrasonic amplitude and ultrasonic frequency. Conventional as well as ultrasonic ECAP has been performed on aluminium 1070 alloy and the obtained data were used for validating simulations. It is observed that a 13% reduction in the average force was achieved when ultrasonic vibration with amplitude of 2.5 µm at 20 kHz is applied. Also, further reduction in ECAP forming forces are obtained with increase of vibration amplitude, vibration frequency, friction factor, billet length and die channel angle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...