Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3D Print Med ; 8(1): 2, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34985624

RESUMEN

BACKGROUND: The global pandemic of novel coronavirus (SARS-CoV-2) has led to global shortages of ventilators and accessories. One solution to this problem is to split ventilators between multiple patients, which poses the difficulty of treating two patients with dissimilar ventilation needs. A proposed solution to this problem is the use of 3D-printed flow splitters and restrictors. There is little data available on the reliability of such devices and how the use of different 3D printing methods might affect their performance. METHODS: We performed flow resistance measurements on 30 different 3D-printed restrictor designs produced using a range of fused deposition modelling and stereolithography printers and materials, from consumer grade printers using polylactic acid filament to professional printers using surgical resin. We compared their performance to novel computational fluid dynamics models driven by empirical ventilator flow rate data. This indicates the ideal performance of a part that matches the computer model. RESULTS: The 3D-printed restrictors varied considerably between printers and materials to a sufficient degree that would make them unsafe for clinical use without individual testing. This occurs because the interior surface of the restrictor is rough and has a reduced nominal average diameter when compared to the computer model. However, we have also shown that with careful calibration it is possible to tune the end-inspiratory (tidal) volume by titrating the inspiratory time on the ventilator. CONCLUSIONS: Computer simulations of differential multi patient ventilation indicate that the use of 3D-printed flow splitters is viable. However, in situ testing indicates that using 3D printers to produce flow restricting orifices is not recommended, as the flow resistance can deviate significantly from expected values depending on the type of printer used. TRIAL REGISTRATION: Not applicable.

3.
Sci Rep ; 7(1): 11844, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928369

RESUMEN

Structural hierarchy is known to enhance the performance of many of Nature's materials. In this work, we apply the idea of hierarchical structure to topologically interlocked assemblies, obtained from measurements under point loading, undertaken on identical discrete block ensembles with matching non-planar surfaces. It was demonstrated that imposing a hierarchical structure adds to the load bearing capacity of topological interlocking assemblies. The deformation mechanics of these structures was also examined numerically by finite element analysis. Multiple mechanisms of surface contact, such as slip and tilt of the building blocks, were hypothesised to control the mechanical response of topological interlocking assemblies studied. This was confirmed using as a model a newly designed interlocking block, where slip was suppressed, which produced a gain in peak loading. Our study highlights the possibility of tailoring the mechanical response of topological interlocking assemblies using geometrical features of both the element geometry and the contact surface profile.

4.
Sci Rep ; 6: 26706, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216277

RESUMEN

Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA