Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
2.
J Gastroenterol ; 58(9): 856-867, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300599

RESUMEN

BACKGROUND: Individual colorectal polyp risk factors are well characterized; however, insights into their pathway-specific interactions are scarce. We aimed to identify the impact of individual risk factors and their joint effects on adenomatous (AP) and serrated polyp (SP) risk. METHODS: We collected information on 363 lifestyle and metabolic parameters from 1597 colonoscopy participants, resulting in over 521,000 data points. We used multivariate statistics and machine-learning approaches to assess associations of single variables and their interactions with AP and SP risk. RESULTS: Individual factors and their interactions showed common and polyp subtype-specific effects. Abdominal obesity, high body mass index (BMI), metabolic syndrome, and red meat consumption globally increased polyp risk. Age, gender, and western diet associated with AP risk, while smoking was associated with SP risk. CRC family history was associated with advanced adenomas and diabetes with sessile serrated lesions. Regarding lifestyle factor interactions, no lifestyle or dietary adjustments mitigated the adverse smoking effect on SP risk, whereas its negative effect was exacerbated by alcohol in the conventional pathway. The adverse effect of red meat on SP risk was not ameliorated by any factor, but was further exacerbated by western diet along the conventional pathway. No modification of any factor reduced the negative impact of metabolic syndrome on AP risk, whereas increased fatless fish or meat substitutes' intake mitigated its effect on SP risk. CONCLUSIONS: Individual risk factors and their interactions for polyp formation along the adenomatous and serrated pathways are strongly heterogeneous. Our findings may facilitate tailored lifestyle recommendations and contribute to a better understanding of how risk factor combinations impact colorectal carcinogenesis.


Asunto(s)
Adenoma , Pólipos Adenomatosos , Pólipos del Colon , Neoplasias Colorrectales , Síndrome Metabólico , Humanos , Pólipos del Colon/epidemiología , Pólipos del Colon/etiología , Síndrome Metabólico/etiología , Síndrome Metabólico/complicaciones , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Adenoma/epidemiología , Adenoma/etiología , Adenoma/patología , Factores de Riesgo , Colonoscopía , Pólipos Adenomatosos/epidemiología , Pólipos Adenomatosos/etiología
3.
Nature ; 612(7941): 739-747, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517598

RESUMEN

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Asunto(s)
Eje Cerebro-Intestino , Dopamina , Ejercicio Físico , Microbioma Gastrointestinal , Motivación , Carrera , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Dopamina/metabolismo , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Células Receptoras Sensoriales/metabolismo , Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Ejercicio Físico/fisiología , Ejercicio Físico/psicología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/psicología , Modelos Animales , Humanos , Estriado Ventral/citología , Estriado Ventral/metabolismo , Carrera/fisiología , Carrera/psicología , Recompensa , Individualidad
4.
Nature ; 605(7908): 160-165, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477756

RESUMEN

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/prevención & control , Humanos
5.
Immunity ; 50(1): 166-180.e7, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650375

RESUMEN

Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing CRC progression. The pro-tumorigenic roles of IL-1 were counteracted by its effects on myeloid cells, particularly neutrophils, where IL-1R1 ablation resulted in bacterial invasion into tumors, heightened inflammation and aggressive CRC progression. Thus, IL-1 signaling elicits cell-type-specific responses, which, in aggregate, set the inflammatory tone of the tumor microenvironment and determine the propensity for disease progression.


Asunto(s)
Neoplasias Colorrectales/inmunología , Inflamación/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Neutrófilos/inmunología , Salmonelosis Animal/inmunología , Salmonella/inmunología , Animales , Carcinogénesis , Células Cultivadas , Humanos , Interleucina-1/genética , Interleucina-1/inmunología , Interleucinas/metabolismo , Ratones , Ratones Noqueados , Neutrófilos/ultraestructura , Especificidad de Órganos , Receptores de Interleucina-1/genética , Transducción de Señal , Microambiente Tumoral , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...