Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(6): 1544-1549, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306707

RESUMEN

Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.

2.
Phys Rev Lett ; 128(15): 155501, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499876

RESUMEN

The origin of limited plasticity in metallic glasses is elusive, with no apparent link to their atomic structure. We propose that the response of the glassy structure to applied stress, not the original structure itself, provides a gauge to predict the degree of plasticity. We carried out high-energy x-ray diffraction on various bulk metallic glasses (BMGs) under uniaxial compression within the elastic limit and evaluated the anisotropic pair distribution function. We show that the extent of local deviation from the affine (uniform) deformation in the elastic regime is strongly correlated with the plastic behavior of BMGs beyond yield, across chemical compositions and sample history. The results suggest that the propensity for collective local atomic rearrangements under stress promotes plasticity.

3.
Nat Commun ; 11(1): 6213, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277499

RESUMEN

With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.

4.
Chem Commun (Camb) ; 56(95): 15056-15059, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33196724

RESUMEN

Discovery of anti-sintering noble metal catalysts is challenging, as supported noble metal species tend to aggregate at high temperatures, leading to severely deteriorated catalytic performances. Here we show that 1 wt% of noble metal species including Au, Pd and Ru can be incorporated into high-entropy oxides (HEOs) through entropy stabilization at 900 °C in air. A reversible temperature-dependent dissolution-exsolution process is observed for Au-HEO. Further correlation with distinct CO oxidation capabilities demonstrates the potential to utilize the entropy effect to access self-regenerative catalysts for catalytic reactions.

5.
Phys Rev E ; 102(3-1): 032604, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075912

RESUMEN

We show that the self-part of the Van Hove function-the correlation function describing the dynamics of a single molecule-of water can be determined through a high-resolution inelastic x-ray scattering experiment. The measurement of inelastic x-ray scattering up to 10Å^{-1} makes it possible to convert the inelastic x-ray scattering spectra into the Van Hove function, and its self-part is extracted from the short-range correlations. The diffusivity estimated from the short-range dynamics of water molecules is different from the long-range diffusivity measured by other methods. This approach using the experimentally determined self-part of the Van Hove function will be useful to the study of the local dynamics of atoms and molecules in liquids.

6.
Phys Rev E ; 101(3-1): 030601, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32289960

RESUMEN

It is difficult to characterize by experiment the structural features of liquids and glasses which lack long-range translational periodicity in the structure. Here, we suggest that the height and shape of the first peak of the structure function S(Q) carry significant information about the nature of the medium-range order and the coherence of density correlations. It is further proposed that they indicate how ideal the liquid structure is. Here, the ideal state is defined by long-range density correlations, not by structural coherence at the atomic level. The analysis is applied to the S(Q) of metallic alloy liquids determined by x-ray diffraction and simulation. The ideality index defined here may provide a common parameter to characterize structural coherence among various disparate groups of liquids and glasses.

7.
J Phys Chem Lett ; 10(22): 7119-7125, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31693369

RESUMEN

Electrolyte solutions are ubiquitous in materials in daily use and in biological systems. However, the understanding of their molecular and ionic dynamics, particularly those of their correlated motions, are elusive despite extensive experimental, theoretical, and numerical studies. Here we report the real-space observations of the molecular/ionic-correlated dynamics of aqueous salt (NaCl, NaBr, and NaI) solutions using the Van Hove functions obtained by high-resolution inelastic X-ray scattering measurement and molecular dynamics simulation. Our results directly depict the distance-dependent dynamics of aqueous salt solutions on the picosecond time scale and identify the changes in the anion-water correlations. This study demonstrates the capability of the real-space Van Hove function analysis to describe the local correlated dynamics in aqueous salt solutions.

9.
Phys Rev E ; 98(2-1): 022604, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253607

RESUMEN

Even though viscosity is one of the fundamental properties of liquids, its microscopic origin is not fully understood. We determined the spatial and temporal correlation of molecular motions of water near room temperature and its temperature variation on a picosecond timescale and a subnanometer spatial scale, through high-resolution inelastic x-ray scattering measurement. The results, expressed in terms of the time-dependent pair correlation function called the Van Hove function, show that the timescale of the decay of the molecular correlation is directly related to the Maxwell relaxation time near room temperature, which is proportional to viscosity. This conclusion validates our earlier finding that the topological changes in atomic or molecular connectivity are the origin of viscosity in liquids.

10.
Nat Commun ; 9(1): 3271, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115910

RESUMEN

The fracture toughness of glassy materials remains poorly understood. In large part, this is due to the disordered, intrinsically non-equilibrium nature of the glass structure, which challenges its theoretical description and experimental determination. We show that the notch fracture toughness of metallic glasses exhibits an abrupt toughening transition as a function of a well-controlled fictive temperature (Tf), which characterizes the average glass structure. The ordinary temperature, which has been previously associated with a ductile-to-brittle transition, is shown to play a secondary role. The observed transition is interpreted to result from a competition between the Tf-dependent plastic relaxation rate and an applied strain rate. Consequently, a similar toughening transition as a function of strain rate is predicted and demonstrated experimentally. The observed mechanical toughening transition bears strong similarities to the ordinary glass transition and explains the previously reported large scatter in fracture toughness data and ductile-to-brittle transitions.

11.
J Phys Chem B ; 120(6): 1142-8, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26798946

RESUMEN

Onset of cooperative dynamics has been observed in many molecular liquids, colloids, and granular materials in the metastable regime on approaching their respective glass or jamming transition points, and is considered to play a significant role in the emergence of the slow dynamics. However, the nature of such dynamical cooperativity remains elusive in multicomponent metallic liquids characterized by complex many-body interactions and high mixing entropy. Herein, we report evidence of onset of cooperative dynamics in an equilibrium glass-forming metallic liquid (LM601: Zr51Cu36Ni4Al9). This is revealed by deviation of the mean effective diffusion coefficient from its high-temperature Arrhenius behavior below TA ≈ 1300 K, i.e., a crossover from uncorrelated dynamics above TA to landscape-influenced correlated dynamics below TA. Furthermore, the onset/crossover temperature TA in such a multicomponent bulk metallic glass-forming liquid is observed at approximately twice of its calorimetric glass transition temperature (Tg ≈ 697 K) and in its stable liquid phase, unlike many molecular liquids.

12.
Sci Rep ; 3: 2578, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23999496

RESUMEN

In the present work, we investigate the effect of "fatigue" on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...