Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36145441

RESUMEN

Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.

2.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802936

RESUMEN

MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3' untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.


Asunto(s)
Enfermedades de los Animales/genética , Enfermedades de los Animales/terapia , Animales Domésticos/genética , Biomarcadores/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Animales , Humanos , Ganado/genética , MicroARNs/metabolismo
3.
Anim Sci J ; 92(1): e13483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33462943

RESUMEN

Understanding of animal growth is important for the improvement of management and feeding practices; however, little is known about the growth curve in Vietnamese indigenous chicken. This study was performed to determine the most appropriate models for describing the growth curve of Vietnamese Mia chicken. The study evaluated the performances of the Logistic, Gompertz, Richards, and Bridges models of body weights in 224 Mia chickens. Models were fitted using minpack.lm package in R software and Akaike's information criterion and Bayesian information criterion were used for model comparison. Based on these criteria, the Gompertz and Bridges were the best models for males and females, respectively. Estimated asymmetric weights (α) were ranged from 2,241.91 ± 14.74 (g) (Logistic) to 2,623.86 ± 30.23 (g) (Gompertz) for males and from 1,537.36 ± 10.97 (g) (Logistic) and 1,958.36 ± 72.92 (g) (Bridges) for females, respectively. The age at the inflection point was estimated from 9.32 to 10.5 weeks and from 8.51 to 9.86 weeks for males and females, respectively. In conclusion, the Gompertz model is the most suitable model for describing the growth curve of Mia chicken. The parameters obtained from growth models could help define feeding programs to meet nutritional needs from hatching to the age of maximum growth, reproduction programs, and marketing strategies.


Asunto(s)
Pollos/crecimiento & desarrollo , Dinámicas no Lineales , Alimentación Animal , Crianza de Animales Domésticos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Teorema de Bayes , Peso Corporal , Pollos/fisiología , Femenino , Masculino , Mercadotecnía , Reproducción , Vietnam
4.
Front Immunol ; 12: 760931, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975852

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative infectious agent of Johne's disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer's patches (PP) located in the jejunum (JE) and ileum (IL). Determining host responses at these intestinal sites can provide a more complete understanding of how MAP manipulates the local microenvironment to support its long-term survival. We selected naturally infected (MAPinf, n=4) and naive (MAPneg, n=3) cows and transcriptionally profiled the JE and IL regions of the small intestine and draining mesenteric lymph nodes (LN). Differentially expressed (DE) genes associated with MAP infection were identified in the IL (585), JE (218), jejunum lymph node (JELN) (205), and ileum lymph node (ILLN) (117). Three DE genes (CD14, LOC616364 and ENSBTAG00000027033) were common to all MAPinf versus MAPneg tissues. Functional enrichment analysis revealed immune/disease related biological processes gene ontology (GO) terms and pathways predominated in IL tissue, indicative of an activated immune response state. Enriched GO terms and pathways in JE revealed a distinct set of host responses from those detected in IL. Regional differences were also identified between the mesenteric LNs draining each intestinal site. More down-regulated genes (52%) and fewer immune/disease pathways (n=5) were found in the ILLN compared to a higher number of up-regulated DE genes (56%) and enriched immune/disease pathways (n=13) in the JELN. Immunohistochemical staining validated myeloid cell transcriptional changes with increased CD172-positive myeloid cells in IL and JE tissues and draining LNs of MAPinf versus MAPneg cows. Several genes, GO terms, and pathways related to metabolism were significantly DE in IL and JE, but to a lesser extent (comparatively fewer enriched metabolic GO terms and pathways) in JELN suggesting distinct regional metabolic changes in IL compared to JE and JELN in response to MAP infection. These unique tissue- and regional-specific differences provides novel insight into the dichotomy in host responses to MAP infection that occur throughout the small intestine and mesenteric LN of chronically MAP infected cows.


Asunto(s)
Enfermedades de los Bovinos , Intestino Delgado , Ganglios Linfáticos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/metabolismo , Femenino , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Paratuberculosis/genética , Paratuberculosis/inmunología , Paratuberculosis/metabolismo , Transcriptoma
5.
Front Genet ; 10: 357, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105739

RESUMEN

The African continent is home to diverse populations of livestock breeds adapted to harsh environmental conditions with more than 70% under traditional systems of management. Animal productivity is less than optimal in most cases and is faced with numerous challenges including limited access to adequate nutrition and disease management, poor institutional capacities and lack of adequate government policies and funding to develop the livestock sector. Africa is home to about 1.3 billion people and with increasing demand for animal proteins by an ever growing human population, the current state of livestock productivity creates a significant yield gap for animal products. Although a greater section of the population, especially those living in rural areas depend largely on livestock for their livelihoods; the potential of the sector remains underutilized and therefore unable to contribute significantly to economic development and social wellbeing of the people. With current advances in livestock management practices, breeding technologies and health management, and with inclusion of all stakeholders, African livestock populations can be sustainably developed to close the animal protein gap that exists in the continent. In particular, advances in gene technologies, and application of genomic breeding in many Western countries has resulted in tremendous gains in traits like milk production with the potential that, implementation of genomic selection and other improved practices (nutrition, healthcare, etc.) can lead to rapid improvement in traits of economic importance in African livestock populations. The African livestock populations in the context of this review are limited to cattle, goat, pig, poultry, and sheep, which are mainly exploited for meat, milk, and eggs. This review examines the current state of livestock productivity in Africa, the main challenges faced by the sector, the role of various stakeholders and discusses in-depth strategies that can enable the application of genomic technologies for rapid improvement of livestock traits of economic importance.

6.
Genomics ; 111(4): 849-859, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775785

RESUMEN

This study aimed to explore the roles of microRNAs (miRNAs) in calf rumen development during early life. Rumen tissues were collected from 16 calves (8 at pre-weaning and 8 at post-weaning) for miRNA-sequencing, differential expression (DE), miRNA weighted gene co-expression network (WGCNA) and miRNA-mRNA co-expression analyses. 295 miRNAs were identified. Bta-miR-143, miR-26a, miR-145 and miR-27b were the most abundantly expressed. 122 miRNAs were significantly DE between the pre- and post-weaning periods and the most up- and down-regulated miRNAs were bta-miR-29b and bta-miR-493, respectively. Enrichment analyses of the target genes of DE miRNAs revealed important roles for miRNA in rumen developmental processes, immune system development, protein digestion and processes related to the extracellular matrix. WGCNA indicated that bta-miR-145 and bta-miR-199a-3p are important hub miRNAs in the regulation of these processes. Therefore, bta-miR-143, miR-29b, miR-145, miR-493, miR-26a and miR-199 family members might be key regulators of calf rumen development during early life.


Asunto(s)
Bovinos/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Rumen/metabolismo , Animales , Bovinos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Rumen/crecimiento & desarrollo
7.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445766

RESUMEN

This study aimed to characterize the long non-coding RNA (lncRNA) expression in the bovine mammary gland and to infer their functions in dietary response to 5% linseed oil (LSO) or 5% safflower oil (SFO). Twelve cows (six per treatment) in mid lactation were fed a control diet for 28 days followed by a treatment period (control diet supplemented with 5% LSO or 5% SFO) of 28 days. Mammary gland biopsies were collected from each animal on day-14 (D-14, control period), D+7 (early treatment period) and D+28 (late treatment period) and were subjected to RNA-Sequencing and subsequent bioinformatics analyses. Functional enrichment of lncRNA was performed via potential cis regulated target genes located within 50 kb flanking regions of lncRNAs and having expression correlation of >0.7 with mRNAs. A total of 4955 lncRNAs (325 known and 4630 novel) were identified which potentially cis targeted 59 and 494 genes in LSO and SFO treatments, respectively. Enrichments of cis target genes of lncRNAs indicated potential roles of lncRNAs in immune function, nucleic acid metabolism and cell membrane organization processes as well as involvement in Notch, cAMP and TGF-ß signaling pathways. Thirty-two and 21 lncRNAs were differentially expressed (DE) in LSO and SFO treatments, respectively. Six genes (KCNF1, STARD13, BCL6, NXPE2, HHIPL2 and MMD) were identified as potential cis target genes of six DE lncRNAs. In conclusion, this study has identified lncRNAs with potential roles in mammary gland functions and potential candidate genes and pathways via which lncRNAs might function in response to LSO and SFA.


Asunto(s)
Suplementos Dietéticos , Perfilación de la Expresión Génica , Aceite de Linaza/farmacología , Glándulas Mamarias Animales/metabolismo , ARN Largo no Codificante/genética , Aceite de Cártamo/farmacología , Animales , Bovinos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Glándulas Mamarias Animales/efectos de los fármacos , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
8.
Cells ; 7(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208606

RESUMEN

This study aimed to investigate the potential regulatory roles of miRNAs in calf ileum developmental transition from the pre- to the post-weaning period. For this purpose, ileum tissues were collected from eight calves at the pre-weaning period and another eight calves at the post-weaning period and miRNA expression characterized by miRNA sequencing, followed by functional analyses. A total of 388 miRNAs, including 81 novel miRNAs, were identified. A total of 220 miRNAs were differentially expressed (DE) between the two periods. The potential functions of DE miRNAs in ileum development were supported by significant enrichment of their target genes in gene ontology terms related to metabolic processes and transcription factor activities or pathways related to metabolism (peroxisomes), vitamin digestion and absorption, lipid and protein metabolism, as well as intracellular signaling. Integration of DE miRNAs and DE mRNAs revealed several DE miRNA-mRNA pairs with crucial roles in ileum development (bta-miR-374a-FBXO18, bta-miR-374a-GTPBP3, bta-miR-374a-GNB2) and immune function (bta-miR-15b-IKBKB). This is the first integrated miRNA-mRNA analysis exploring the potential roles of miRNAs in calf ileum growth and development during early life.

9.
Sci Rep ; 8(1): 13239, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185830

RESUMEN

This study aimed to identify single nucleotide polymorphisms (SNPs) associated with milk cholesterol (CHL) content via a genome wide association study (GWAS). Milk CHL content was determined by gas chromatography and expressed as mg of CHL in 100 g of fat (CHL_fat) or in 100 mg of milk (CHL_milk). GWAS was performed with 1,183 cows and 40,196 SNPs using a univariate linear mixed model. Two and 20 SNPs were significantly associated with CHL_fat and CHL_milk, respectively. The important regions for CHL_fat and CHL_milk were at 41.9 Mb on chromosome (BTA) 17 and 1.6-3.2 Mb on BTA 14, respectively. DGAT1, PTPN1, INSIG1, HEXIM1, SDS, and HTR5A genes, also known to be associated with human plasma CHL phenotypes, were identified as potential candidate genes for bovine milk CHL. Additional new potential candidate genes for milk CHL were RXFP1, FAM198B, TMEM144, CXXC4, MAML2 and CDH13. Enrichment analyses suggested that identified candidate genes participated in cell-cell signaling processes and are key members in tight junction, focal adhesion, Notch signaling and glycerolipid metabolism pathways. Furthermore, identified transcription factors such as PPARD, LXR, and NOTCH1 might be important in the regulation of bovine milk CHL content. The expression of several positional candidate genes (such as DGAT1, INSIG1 and FAM198B) and their correlation with milk CHL content were further confirmed with RNA sequence data from mammary gland tissues. This is the first GWAS on bovine milk CHL. The identified markers and candidate genes need further validation in a larger cohort for use in the selection of cows with desired milk CHL content.


Asunto(s)
Bovinos/genética , Colesterol/genética , Leche/metabolismo , Animales , Femenino , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Sci Rep ; 8(1): 14147, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237565

RESUMEN

This study investigated the effect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post-weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had significant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA significantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the beneficial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential beneficial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control. Furthermore, the pathogenic bacterium, Peptoclostridium, was reduced (FDR = 1.58E-02) by SCB only while LA reduced (FDR = 1.74E-05) Ruminococcus_2. Functional prediction analysis suggested that both DFMs impacted (p < 0.05) pathways such as cell cycle, bile secretion, proteasome, cAMP signaling pathway, thyroid hormone synthesis pathway and dopaminergic synapse pathway. Compared to the DFMs, ATB had similar impact on bacterial diversity in all GIT sites but greater impact on the bacterial composition of the ileum. Overall, this study provides an insight on the bacteria genera impacted by DFMs and the potential mechanisms by which DFMs affect the GIT microbiota and may therefore facilitate development of DFMs as alternatives to ATB use in dairy calf management.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Animales , Bovinos , Suplementos Dietéticos , Rumen/microbiología , Destete
11.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149509

RESUMEN

MicroRNAs (miRNA) regulate mRNA networks to coordinate cellular functions. In this study, we constructed gene co-expression networks to detect miRNA modules (clusters of miRNAs with similar expression patterns) and miRNA⁻mRNA pairs associated with blood (triacylglyceride and nonesterified fatty acids) and milk (milk yield, fat, protein, and lactose) components and milk fatty acid traits following dietary supplementation of cows' diets with 5% linseed oil (LSO) (n = 6 cows) or 5% safflower oil (SFO) (n = 6 cows) for 28 days. Using miRNA transcriptome data from mammary tissues of cows for co-expression network analysis, we identified three consensus modules: blue, brown, and turquoise, composed of 70, 34, and 86 miRNA members, respectively. The hub miRNAs (miRNAs with the most connections with other miRNAs) were miR-30d, miR-484 and miR-16b for blue, brown, and turquoise modules, respectively. Cell cycle arrest, and p53 signaling and transforming growth factor⁻beta (TGF-ß) signaling pathways were the common gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for target genes of the three modules. Protein percent (p = 0.03) correlated with the turquoise module in LSO treatment while protein yield (p = 0.003) and milk yield (p = 7 × 10-04) correlated with the turquoise model, protein and milk yields and lactose percent (p < 0.05) correlated with the blue module and fat percent (p = 0.04) correlated with the brown module in SFO treatment. Several fatty acids correlated (p < 0.05) with the blue (CLA:9,11) and brown (C4:0, C12:0, C22:0, C18:1n9c and CLA:10,12) modules in LSO treatment and with the turquoise (C14:0, C18:3n3 and CLA:9,11), blue (C14:0 and C23:0) and brown (C6:0, C16:0, C22:0, C22:6n3 and CLA:10,12) modules in SFO treatment. Correlation of miRNA and mRNA data from the same animals identified the following miRNA⁻mRNA pairs: miR-183/RHBDD2 (p = 0.003), miR-484/EIF1AD (p = 0.011) and miR-130a/SBSPON (p = 0.004) with lowest p-values for the blue, brown, and turquoise modules, respectively. Milk yield, protein yield, and protein percentage correlated (p < 0.05) with 28, 31 and 5 miRNA⁻mRNA pairs, respectively. Our results suggest that, the blue, brown, and turquoise modules miRNAs, hub miRNAs, miRNA⁻mRNA networks, cell cycle arrest GO term, p53 signaling and TGF-ß signaling pathways have considerable influence on milk and blood phenotypes following dietary supplementation of dairy cows' diets with 5% LSO or 5% SFO.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Metaboloma , MicroARNs/genética , Leche , Carácter Cuantitativo Heredable , Interferencia de ARN , ARN Mensajero/genética , Animales , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Estudios de Asociación Genética , Metabolómica/métodos , Fenotipo , Transcriptoma
12.
Genes (Basel) ; 9(3)2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510583

RESUMEN

A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively. Gene ontology and pathways enrichment of DE genes confirmed their roles in developmental processes, immunity and lipid metabolism. A total of 1568 (63 known and 1505 novel) and 4243 (88 known and 4155 novel) lncRNAs were detected in ileum and rumen tissues, respectively. Cis target gene analysis identified BMPR1A, an important gene for a GIT disease (juvenile polyposis syndrome) in humans, as a candidate cis target gene for lncRNAs in both tissues. LncRNA cis target gene enrichment suggested that lncRNAs might regulate growth and development in both tissues as well as posttranscriptional gene silencing by RNA or microRNA processing in rumen, or disease resistance mechanisms in ileum. This study provides a catalog of bovine lncRNAs and set a baseline for exploring their functions in calf GIT development.

13.
Sci Rep ; 7(1): 12205, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939879

RESUMEN

Boar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included "Ribosome", "Protein export" and "Oxidative phosphorylation" in liver and "Steroid hormone biosynthesis" and "Gap junction" in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs.


Asunto(s)
Crianza de Animales Domésticos/métodos , Redes Reguladoras de Genes/genética , Carne/análisis , Redes y Vías Metabólicas/genética , Selección Artificial/genética , Androsterona/análisis , Androsterona/metabolismo , Animales , Biomarcadores/análisis , Estudios de Factibilidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hígado/química , Masculino , Odorantes/análisis , Sitios de Carácter Cuantitativo/genética , Selección Genética , Escatol/análisis , Escatol/metabolismo , Sus scrofa/genética , Sus scrofa/metabolismo , Testículo/química , Testículo/metabolismo
14.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718798

RESUMEN

Co-expression network analyses provide insights into the molecular interactions underlying complex traits and diseases. In this study, co-expression network analysis was performed to detect expression patterns (modules or clusters) of microRNAs (miRNAs) during lactation, and to identify miRNA regulatory mechanisms for milk yield and component traits (fat, protein, somatic cell count (SCC), lactose, and milk urea nitrogen (MUN)) via miRNA target gene enrichment analysis. miRNA expression (713 miRNAs), and milk yield and components (Fat%, Protein%, lactose, SCC, MUN) data of nine cows at each of six different time points (day 30 (D30), D70, D130, D170, D230 and D290) of an entire lactation curve were used. Four modules or clusters (GREEN, BLUE, RED and TURQUOISE) of miRNAs were identified as important for milk yield and component traits. The GREEN and BLUE modules were significantly correlated (|r| > 0.5) with milk yield and lactose, respectively. The RED and TURQUOISE modules were significantly correlated (|r| > 0.5) with both SCC and lactose. In the GREEN module, three abundantly expressed miRNAs (miR-148a, miR-186 and miR-200a) were most significantly correlated to milk yield, and are probably the most important miRNAs for this trait. DDR1 and DDHX1 are hub genes for miRNA regulatory networks controlling milk yield, while HHEX is an important transcription regulator for these networks. miR-18a, miR-221/222 cluster, and transcription factors HOXA7, and NOTCH 3 and 4, are important for the regulation of lactose. miR-142, miR-146a, and miR-EIA17-14144 (a novel miRNA), and transcription factors in the SMAD family and MYB, are important for the regulation of SCC. Important signaling pathways enriched for target genes of miRNAs of significant modules, included protein kinase A and PTEN signaling for milk yield, eNOS and Noth signaling for lactose, and TGF ß, HIPPO, Wnt/ß-catenin and cell cycle signaling for SCC. Relevant enriched gene ontology (GO)-terms related to milk and mammary gland traits included cell differentiation, G-protein coupled receptor activity, and intracellular signaling transduction. Overall, this study uncovered regulatory networks in which miRNAs interacted with each other to regulate lactation traits.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Leche/metabolismo , Carácter Cuantitativo Heredable , Transducción de Señal/genética , Animales , Bovinos , Femenino , Ontología de Genes , Lactancia/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo
15.
Sci Rep ; 7: 44605, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317898

RESUMEN

The study examined microRNA (miRNA) expression and regulatory patterns during an entire bovine lactation cycle. Total RNA from milk fat samples collected at the lactogenesis (LAC, day1 [D1] and D7), galactopoiesis (GAL, D30, D70, D130, D170 and D230) and involution (INV, D290 and when milk production dropped to 5 kg/day) stages from 9 cows was used for miRNA sequencing. A total of 475 known and 238 novel miRNAs were identified. Fifteen abundantly expressed miRNAs across lactation stages play regulatory roles in basic metabolic, cellular and immunological functions. About 344, 366 and 209 miRNAs were significantly differentially expressed (DE) between GAL and LAC, INV and GAL, and INV and LAC stages, respectively. MiR-29b/miR-363 and miR-874/miR-6254 are important mediators for transition signals from LAC to GAL and from GAL to INV, respectively. Moreover, 58 miRNAs were dynamically DE in all lactation stages and 19 miRNAs were significantly time-dependently DE throughout lactation. Relevant signalling pathways for transition between lactation stages are involved in apoptosis (PTEN and SAPK/JNK), intracellular signalling (protein kinase A, TGF-ß and ERK5), cell cycle regulation (STAT3), cytokines, hormones and growth factors (prolactin, growth hormone and glucocorticoid receptor). Overall, our data suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.


Asunto(s)
Bovinos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lactancia/genética , MicroARNs/genética , Transducción de Señal/genética , Animales , Femenino , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , Factores de Tiempo
16.
Front Genet ; 5: 307, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25250046

RESUMEN

Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher's exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...