Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594953

RESUMEN

Plant triacylglycerols (TAG) are used in food and various industrial feedstocks. LEAFY COTYLEDON 2 (LEC2), a master positive regulator of TAG biosynthesis, regulates a complex network of transcription factors (TFs) during seed development. Aside from WRINKLED1 (WRI1), the TFs regulated by LEC2 related to TAG biosynthesis have not yet been identified. Previously, we identified 25 seed-expressing TFs that were upregulated in Arabidopsis leaves that overexpressed senescence-induced LEC2. In this study, each of the 25 TFs was transiently expressed in the leaves of Nicotiana benthamiana to identify unknown TFs that regulate TAG biosynthesis. The TAG content of the transformed leaves was analyzed using thin layer chromatography and gas chromatography. We observed that five TFs, ARABIDOPSIS RESPONSIVE REGULATOR 21 (ARR21), AINTEGUMENTA-LIKE 6 (AIL6), APETALA2/ETHYLENE RESPONSIVE FACTOR 55 (ERF55), WRKY DNA-BINDING PROTEIN 8 (WRKY8), and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 38 (ANAC038) increased TAG synthesis in the leaves. Among these, the promoters of AIL6, ERF55, WRKY8, and ANAC038 contain RY motifs, which are LEC2-binding sites activated by LEC2. AIL6 overexpression in Arabidopsis increased the total fatty acid (FA) content in seeds and altered the FA composition, with increases in 16:0, 18:1, and 18:2 and decreases in 18:0, 18:3, and 20:1 compared with those in the wild type (WT). AIL6 overexpression activates several FA and TAG biosynthesis genes. Therefore, our study successfully identified several new TFs regulated by LEC2 in TAG biosynthesis and showed that AIL6 increased the TAG content in seeds.

2.
J Exp Bot ; 73(9): 2905-2917, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560201

RESUMEN

Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Semillas , Plantas/genética , Plantas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...