Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Transl Med ; 22(1): 416, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698408

RESUMEN

One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Animales , Resultado del Tratamiento , United States Food and Drug Administration , Estados Unidos , Ensayos Clínicos como Asunto
2.
Environ Int ; 182: 108285, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972530

RESUMEN

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Asunto(s)
Gases em Plasma , Virus , Animales , Humanos , Agua , Gases em Plasma/farmacología , Inactivación de Virus
3.
Foods ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38002213

RESUMEN

The proliferation of genetically modified organisms (GMOs) presents challenges to GMO testing laboratories and policymakers. Traditional methods, like quantitative real-time PCR (qPCR), face limitations in quantifying the increasing number of GMOs in a single sample. Digital PCR (dPCR), specifically multiplexing, offers a solution by enabling simultaneous quantification of multiple GMO targets. This study explores the use of the Naica six-color Crystal dPCR platform for quantifying five GM soybean lines within a single six-plex assay. Two four-color assays were also developed for added flexibility. These assays demonstrated high specificity, sensitivity (limit of detection or LOD < 25 copies per reaction) and precision (bias to an estimated copy number concentration <15%). Additionally, two approaches for the optimization of data analysis were implemented. By applying a limit-of-blank (LOB) correction, the limit of quantification (LOQ) and LOD could be more precisely determined. Pooling of reactions additionally lowered the LOD, with a two- to eight-fold increase in sensitivity. Real-life samples from routine testing were used to confirm the assays' applicability for quantifying GM soybean lines in complex samples. This study showcases the potential of the six-color Crystal dPCR platform to revolutionize GMO testing, facilitating comprehensive analysis of GMOs in complex samples.

5.
J Pharm Sci ; 111(8): 2143-2148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35439471

RESUMEN

Adeno-associated viral (AAV) capsids are an emerging vector technology for a number of novel gene therapy modalities (including transgene delivery and CRISPR gene editing). In this commentary, the proper approach to managing uncertainty (described by Rosenberg et al., 2012) when determining critical quality attributes is stated and applied retrospectively to Peginesatide and prospectively to AAV drug product integrity. With Peginesatide, the omission of advanced analytical techniques (for particles) led to a severe safety risk that appeared post marketing. Peginesatide was withdrawn from the market. One of the critical quality attributes of AAV capsid products is drug product integrity. Drug product integrity is critical because it is related to measuring the active dose of product and because the effects of empty, aggregated, particulate, and partial capsids on efficacy and safety are uncertain. The dose of an AAV capsid vector is typically measured as genomes per milliliter. Regulatory agencies have already recommended digital PCR (dPCR) methods because traditional real-time PCR methods were not precise enough for drug product characterization. However, even with dPCR methods, the practice of characterizing AAV product with a simple empty-full ratio is problematic because simplex dPCR methods count partial genomes as full genomes. The proper management of uncertainty requires a robust quantitative measurement of AAV drug product integrity to ensure control of efficacy and safety. Multiplex dPCR and SV-AUC are promising technologies that together have the potential to enable the development of assays fit for the purpose of measuring AAV drug product integrity more precisely.


Asunto(s)
Dependovirus , Vectores Genéticos , Área Bajo la Curva , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos
6.
Clin Microbiol Rev ; 35(3): e0016821, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35258315

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Humanos , Pandemias , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
Front Med (Lausanne) ; 8: 748668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692738

RESUMEN

Increasing research demonstrates the potential of donor-derived cell-free DNA (dd-cfDNA) as a biomarker for monitoring the health of various solid organ transplants. Several methods have been proposed for cfDNA analysis, including real-time PCR, digital PCR, and next generation sequencing-based approaches. We sought to revise the droplet digital PCR (ddPCR)-based approach to quantify relative dd-cfDNA in plasma from kidney transplant (KTx) patients using a novel pilot set of assays targeting single nucleotide polymorphisms that have a very high potential to distinguish cfDNA from two individuals. The assays are capable of accurate quantification of down to 0.1% minor allele content when analyzing 165 ng of human DNA. We found no significant differences in the yield of extracted cfDNA using the three different commercial kits tested. More cfDNA was extracted from the plasma of KTx patients than from healthy volunteers, especially early after transplantation. The median level of donor-derived minor alleles in KTx samples was 0.35%. We found that ddPCR using the evaluated assays within specific range is suitable for analysis of KTx patients' plasma but recommend prior genotyping of donor DNA and performing reliable preamplification of cfDNA.

8.
Front Microbiol ; 12: 618209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584622

RESUMEN

Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.

9.
Trends Biotechnol ; 38(11): 1278-1291, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32418663

RESUMEN

Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Gases em Plasma/farmacología , Neumonía Viral/prevención & control , Inactivación de Virus , Animales , Bacteriófagos/patogenicidad , Betacoronavirus/patogenicidad , Biotecnología/instrumentación , COVID-19 , Infecciones por Coronavirus/transmisión , Descontaminación/métodos , Desinfección/métodos , Microbiología Ambiental , Humanos , Modelos Biológicos , Virus de Plantas/patogenicidad , Gases em Plasma/química , Neumonía Viral/transmisión , Prueba de Estudio Conceptual , SARS-CoV-2 , Virus/patogenicidad
10.
Plants (Basel) ; 9(3)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143472

RESUMEN

In recent years, pepino mosaic virus (PepMV) has rapidly evolved from an emerging virus to an endemic pathogen, as it causes significant loses to tomato crops worldwide. At present, the main control strategy for prevention of PepMV disease in tomato production remains based on strict hygiene measures. To prevent damage caused by PepMV, cross-protection is used in some countries. Reliable characterisation, detection and quantification of the pathogen are vital for disease control. At present, reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) is generally used for this purpose. However, quantitative use of RT-qPCR is linked to standardised reference materials, which are not available for PepMV. In addition, many factors can influence RT-qPCR efficiencies and lead to lower accuracy of the quantification. In this study, well-characterised PepMV-genotype-specific RT-qPCR assays were transferred to two digital PCR (dPCR) platforms. dPCR-based assays allow absolute quantification without the need for standard curves, and due to the binary nature of the reaction, dPCR also overcomes many of the other drawbacks of RT-qPCR. We have shown that these newly developed and validated PepMV-genotype-specific dPCR assays are suitable candidates for higher-order methods for quantification of PepMV RNA, as they show lower measurement variability, with sensitivity and specificity comparable to RT-qPCR.

11.
Front Microbiol ; 10: 1570, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379763

RESUMEN

One of the main challenges in the gene therapy viral vector development is to establish an optimized process for its large scale production. This requires optimization for upstream and downstream processes as well as methods that enable the step-by step analytical characterization of the virus, the results of which inform the iterative refinement of production for yield, purity and potency. The biggest problem here is a plethora of viral vector formulations, many of which interfere with analytical techniques. We took adeno-associated virus (AAV) as an example and showed benefits of combined use of molecular methods and transmission electron microscopy (TEM) for viral vectors' characterization and quantification. Results of the analyses showed that droplet digital PCR (ddPCR) performs better than quantitative real-time PCR (qPCR), in terms of robustness and assay variance, and this was especially relevant for partially purified (in-process) samples. Moreover, we demonstrate the importance of sample preparation prior to PCR analysis. We evaluated viral structure, presence of aggregates and impurities with TEM analysis and found that these impacted the differences in viral titers observed by qPCR and ddPCR and could be altered by sample preparation. These results serve as a guide for the establishment of the analytical methods required to provide measures of identity and purity for AAV viral vectors.

12.
Food Environ Virol ; 11(3): 220-228, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31037614

RESUMEN

While one of the biggest problems we are facing today is water scarcity, enormous quantities of water are still being used in irrigation. If contaminated, this water can act as an effective pathway for the spread of disease-causing agents, like viruses. Here, we present a novel, environmentally friendly method known as cold atmospheric plasma for inactivation of viruses in water used in closed irrigation systems. We measured the plasma-mediated viral RNA degradation as well as the plasma-induced loss of viral infectivity using potato virus Y as a model virus due to its confirmed water transmissibility and economic as well as biological importance. We showed that only 1 min of plasma treatment is sufficient for successful inactivation of viruses in water samples with either high or low organic background. The plasma-mediated inactivation was efficient even at markedly higher virus concentrations than those expected in irrigation waters. Obtained results point to reactive oxygen species as the main mode of viral inactivation. Our laboratory-scale experiments confirm for the first time that plasma has an excellent potential as the eukaryotic virus inactivation tool for water sources and could thus provide a cost-effective solution for irrigation mediated plant virus transmission. The outstanding inactivation efficiency demonstrated by plasma treatments in water samples offers further expansions of its application to other water sources such as reused wastewater or contaminated drinking waters, as well as other plant, animal, and human waterborne viruses, ultimately leading to the prevention of water scarcity and numerous human, animal, and plant infections worldwide.


Asunto(s)
Desinfección/métodos , Gases em Plasma/farmacología , Potyvirus/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Aguas Residuales/virología , Riego Agrícola , Potyvirus/fisiología , Contaminación del Agua
13.
Sci Rep ; 9(1): 3735, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842431

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Methods Mol Biol ; 1768: 69-98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29717438

RESUMEN

The standard-curve based simplex quantitative polymerase chain reaction (qPCR) has been the gold standard for DNA target quantification for more than a decade. The large and growing number of individual analyses needed to test for genetically modified organisms (GMOs) is reducing the cost-effectiveness of qPCR. Droplet digital PCR (ddPCR) enables absolute quantification without standard curves, avoids the amplification efficiency bias observed with qPCR, allows more accurate estimations at low target copy numbers and, in combination with multiplexing, significantly improves cost efficiency. Here we describe two protocols for multiplex quantification of GM maize events: (1) nondiscriminating, with multiplex quantification of targets as a group (12 GM maize lines) and (2) discriminating, with multiplex quantification of individual targets (events). The first enables the quantification of twelve European Union authorized GM maize events as a group with only two assays, but does not permit determination of the individual events present. The second protocol enables the quantification of four individual targets (three GM events and one endogene) in a single reaction. Both protocols can be modified for quantification of any other DNA target.


Asunto(s)
ADN de Plantas/análisis , Reacción en Cadena de la Polimerasa Multiplex/métodos , Plantas Modificadas Genéticamente/genética , Zea mays/genética , Análisis Costo-Beneficio , ADN de Plantas/aislamiento & purificación , Unión Europea , Reacción en Cadena de la Polimerasa Multiplex/economía , Reacción en Cadena de la Polimerasa Multiplex/instrumentación
15.
Anal Bioanal Chem ; 410(16): 3815-3825, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725728

RESUMEN

RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.


Asunto(s)
Potyvirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Automatización , Secuencia de Bases , Genes Virales , Potyvirus/clasificación , Potyvirus/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinación Genética , Homología de Secuencia de Aminoácido
16.
Anal Bioanal Chem ; 410(17): 4039-4050, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29574561

RESUMEN

The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.


Asunto(s)
Organismos Modificados Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Computadores , ADN/genética , Variaciones en el Número de Copia de ADN , Organismos Modificados Genéticamente/genética
17.
Anal Bioanal Chem ; 410(1): 211-221, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29071363

RESUMEN

Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.


Asunto(s)
ADN de Plantas/genética , Pisum sativum/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Zea mays/genética , Dosificación de Gen , Dispositivos Laboratorio en un Chip , Reacción en Cadena de la Polimerasa/instrumentación
18.
Anal Bioanal Chem ; 409(28): 6689-6697, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28921124

RESUMEN

Accurate and precise nucleic-acid quantification is crucial for clinical and diagnostic decisions, as overestimation or underestimation can lead to misguided treatment of a disease or incorrect labelling of the products. Digital PCR is one of the best tools for absolute nucleic-acid copy-number determination. However, digital PCR needs to be well characterised in terms of accuracy and sources of uncertainty. With droplet digital PCR, discrepancies between the droplet volume assigned by the manufacturer and measured by independent laboratories have already been shown in previous studies. In the present study, we report on the results of an inter-laboratory comparison of different methods for droplet volume determination that is based on optical microscopy imaging and is traceable to the International System of Units. This comparison was conducted on the same DNA material, with the examination of the influence of parameters such as droplet generators, supermixes, operators, inter-cartridge and intra-cartridge variability, and droplet measuring protocol. The mean droplet volume was measured using a QX200™ AutoDG™ Droplet Digital™ PCR system and two QX100™ Droplet Digital™ PCR systems. The data show significant volume differences between these two systems, as well as significant differences in volume when different supermixes are used. We also show that both of these droplet generator systems produce droplets with significantly lower droplet volumes (13.1%, 15.9%, respectively) than stated by the manufacturer and previously measured by other laboratories. This indicates that to ensure precise quantification, the droplet volumes should be assessed for each system.


Asunto(s)
ADN/análisis , Reacción en Cadena de la Polimerasa/métodos , Análisis de Varianza , ADN/genética , Procesamiento de Imagen Asistido por Computador , Microscopía , Imagen Óptica , Reacción en Cadena de la Polimerasa/instrumentación , Tamaño de la Muestra , Programas Informáticos
19.
Sci Rep ; 7(1): 8601, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819142

RESUMEN

Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.


Asunto(s)
Glycine max/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Análisis Costo-Beneficio , Unión Europea , Límite de Detección , Reacción en Cadena de la Polimerasa Multiplex/economía , Plantas Modificadas Genéticamente
20.
Front Plant Sci ; 8: 2192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312421

RESUMEN

Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level responses to physiological processes. We discovered an interesting novel sRNAs-gibberellin regulatory circuit being activated as early as 3 days post inoculation (dpi) before viral multiplication can be detected. Two endogenous sRNAs, miR167 and phasiRNA931 were predicted to regulate gibberellin biosynthesis genes GA20-oxidase and GA3-oxidase. The increased expression of phasiRNA931 was also reflected in decreased levels of GA3-oxidase transcripts. Moreover, decreased concentration of gibberellin confirmed this regulation. The functional relation between lower activity of gibberellin signaling and reduced disease severity was previously confirmed in Arabidopsis-virus interaction using knockout mutants. We further showed that this regulation is salicylic acid-dependent as the response of sRNA network was attenuated in salicylic acid-depleted transgenic counterpart NahG-Désirée expressing severe disease symptoms. Besides downregulation of gibberellin signaling, regulation of immune receptor transcripts by miR6022 as well as upregulation of miR164, miR167, miR169, miR171, miR319, miR390, and miR393 in tolerant Désirée, revealed striking similarities to responses observed in mutualistic symbiotic interactions. The intertwining of different regulatory networks revealed, shows how developmental signaling, disease symptom development, and stress signaling can be balanced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...