Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324687

RESUMEN

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi , Estructuras R-Loop , Humanos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN/genética
2.
Mol Oncol ; 18(1): 6-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37067201

RESUMEN

Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Inestabilidad Genómica , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
3.
Nat Commun ; 14(1): 1791, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997515

RESUMEN

Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Humanos , Especies Reactivas de Oxígeno , Fase S/genética , Proteínas de Unión al ADN/metabolismo , Hidroxiurea/farmacología , ADN
4.
Nucleic Acids Res ; 50(21): 12274-12290, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36453994

RESUMEN

R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.


Asunto(s)
Replicación del ADN , Estructuras R-Loop , Humanos , Replicación del ADN/genética , ADN Helicasas/metabolismo , Endonucleasas/metabolismo , ADN/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
5.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916766

RESUMEN

R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , ADN/biosíntesis , Inhibidores Enzimáticos/farmacología , Fase G1/efectos de los fármacos , Estructuras R-Loop , Recombinasa Rad51 , Línea Celular Tumoral , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo
6.
Nat Commun ; 11(1): 5117, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037203

RESUMEN

Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate ß-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of ß-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Helicobacter pylori/patogenicidad , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , ADN/química , ADN/genética , Daño del ADN , Replicación del ADN/efectos de los fármacos , Floxuridina , Glicosiltransferasas/metabolismo , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Lipopolisacáridos/metabolismo , Mutación , FN-kappa B/genética , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
7.
Genes (Basel) ; 11(2)2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098287

RESUMEN

RECQ5 belongs to the RecQ family of DNA helicases. It is conserved from Drosophila to humans and its deficiency results in genomic instability and cancer susceptibility in mice. Human RECQ5 is known for its ability to regulate homologous recombination by disrupting RAD51 nucleoprotein filaments. It also binds to RNA polymerase II (RNAPII) and negatively regulates transcript elongation by RNAPII. Here, we summarize recent studies implicating RECQ5 in the prevention and resolution of transcription-replication conflicts, a major intrinsic source of genomic instability during cancer development.


Asunto(s)
RecQ Helicasas/fisiología , Animales , ADN/genética , ADN/metabolismo , Replicación del ADN , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Transcripción Genética/genética
8.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759821

RESUMEN

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Asunto(s)
Replicación del ADN/fisiología , Estructuras R-Loop/genética , Recombinasa Rad51/metabolismo , Línea Celular Tumoral , ADN Ligasas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Células HeLa , Humanos , Estructuras R-Loop/fisiología , Recombinasa Rad51/genética , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Transcripción Genética/genética
9.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639241

RESUMEN

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Poliadenilación , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas de Unión al ARN
10.
Biophys Chem ; 225: 20-26, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27876204

RESUMEN

DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.


Asunto(s)
Replicación del ADN , RecQ Helicasas/fisiología , Inestabilidad Genómica , Humanos , Neoplasias/etiología
11.
J Cell Biol ; 214(4): 401-15, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27502483

RESUMEN

Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates.


Asunto(s)
Replicación del ADN , RecQ Helicasas/metabolismo , Transcripción Genética , Proteína BRCA1/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Sistemas de Lectura Abierta/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/genética , Recombinasa Rad51/metabolismo , Estrés Fisiológico/genética , Elongación de la Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Proc Natl Acad Sci U S A ; 109(29): 11776-81, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753499

RESUMEN

Inhibition of cytokine gene expression by the hormone-activated glucocorticoid receptor (GR) is the key component of the anti-inflammatory actions of glucocorticoids, yet the underlying molecular mechanisms remain obscure. Here we report that glucocorticoid repression of cytokine genes in primary macrophages is mediated by GR-interacting protein (GRIP)1, a transcriptional coregulator of the p160 family, which is recruited to the p65-occupied genomic NFκB-binding sites in conjunction with liganded GR. We created a mouse strain enabling a conditional hematopoietic cell-restricted deletion of GRIP1 in adult animals. In this model, GRIP1 depletion in macrophages attenuated in a dose-dependent manner repression of NFκB target genes by GR irrespective of the upstream Toll-like receptor pathway responsible for their activation. Furthermore, genome-wide transcriptome analysis revealed a broad derepression of lipopolysaccharide (LPS)-induced glucocorticoid-sensitive targets in GRIP1-depleted macrophages without affecting their activation by LPS. Consistently, conditional GRIP1-deficient mice were sensitized, relative to the wild type, to a systemic inflammatory challenge developing characteristic signs of LPS-induced shock. Thus, by serving as a GR corepressor, GRIP1 facilitates the anti-inflammatory effects of glucocorticoids in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Antiinflamatorios/inmunología , Citocinas/antagonistas & inhibidores , Regulación de la Expresión Génica/inmunología , Glucocorticoides/inmunología , Proteínas del Tejido Nervioso/inmunología , Receptores de Glucocorticoides/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Immunoblotting , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Análisis de Supervivencia , Factor de Transcripción ReIA/metabolismo
13.
Mol Cell Biol ; 32(4): 730-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22158970

RESUMEN

Much of the regulatory diversity in eukaryotic transcription is provided by coregulators, which are recruited by DNA-binding factors to propagate signaling to basal machinery or chromatin. p160 family members, including the glucocorticoid receptor (GR)-interacting protein 1 (GRIP1), function as coactivators for GR, a ligand-dependent transcription factor of the nuclear receptor superfamily. Unlike other p160s, GRIP1 also potentiates GR-mediated repression of AP1 and NF-κB targets and, surprisingly, transcriptional activation by interferon regulatory factors. What enables GRIP1 activating or repressing properties or discrimination between physiologically antagonistic pathways is unknown. We found that endogenous GRIP1 in mammalian cells undergoes glucocorticoid-induced, GR interaction-dependent phosphorylation and identified one constitutive and six inducible phosphorylation sites and two putative GRIP1 kinases, casein kinase 2 and cyclin-dependent kinase 9. We raised phosphospecific antibodies to the four closely spaced sites in a previously uncharacterized part of GRIP1 which, combined with mutagenesis, revealed the conservation of GRIP1 phosphorylation across several cell types and species and its functional relevance to GR-activated transcription and to response element-specific recruitment of phospho-GRIP1 to native GR targets. We propose that cofactor engagement by GR is neither passive nor stochastic; rather, GR actively imparts modifications that dictate GRIP1 function in a subset of complexes, adding a layer of specificity to GR transcriptional control.


Asunto(s)
Glucocorticoides/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Quinasa de la Caseína II/metabolismo , Línea Celular , Quinasa 9 Dependiente de la Ciclina/metabolismo , Cartilla de ADN/genética , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Coactivador 2 del Receptor Nuclear/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Homología de Secuencia de Aminoácido , Activación Transcripcional
14.
Cell Cycle ; 9(15): 3085-99, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699642

RESUMEN

The Promyelocytic leukemia protein (PML) tumor suppressor is upregulated in several forms of cellular senescence, however the mechanism of its induction is elusive. Here we show that genotoxic drugs that induce senescence, such as 5-bromo-2'deoxyuridine (BrdU), thymidine (TMD), distamycin A (DMA), aphidicolin (APH), etoposide (ET) and camptothecin (CPT) all evoke expansion of PML nuclear compartment and its association with persistent DNA lesions in several human cancer cell lines and normal diploid fibroblasts. This phenomenon was accompanied by elevation of PML transcripts after treatment with BrdU, TMD, DMA and CPT. Chemical inhibition of all JAK kinases and RNAi-mediated knock-down of JAK1 suppressed PML expression, implicating JAK/STAT-mediated signaling in regulation of the PML gene. As PML protein stability remained unchanged after drug treatment, decreased protein turnover was unlikely to explain the senescence-associated increased abundance of PML. Furthermore, binding activity of Interferon Stimulated Response Element (ISRE) within the PML gene promoter, and suppression of reporter gene activity after deletion of ISRE from the PML promoter region suggested that drug-induced PML transcription is controlled via transcription factors interacting with this element. Collectively, our data show that upregulation of the PML tumor suppressor in cellular senescence triggered by diverse drugs including clinically used anti-cancer chemotherapeutics relies on stimulation of PML transcription by JAK/STAT-mediated signaling, possibly evoked by the autocrine/paracrine activities of senescence-associated cytokines.


Asunto(s)
Antineoplásicos/farmacología , Senescencia Celular/efectos de los fármacos , Janus Quinasa 1/metabolismo , Neoplasias/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Compartimento Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/enzimología , Neoplasias/genética , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
15.
Mol Cell Biol ; 30(19): 4564-74, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20679482

RESUMEN

Type I interferon (IFN) is essential for host defenses against viruses; however, dysregulated IFN signaling is causally linked to autoimmunity, particularly systemic lupus erythematosus. Autoimmune disease treatments rely on glucocorticoids (GCs), which act via the GC receptor (GR) to repress proinflammatory cytokine gene transcription. Conversely, cytokine signaling through cognate Jak/STAT pathways is reportedly unaffected or even stimulated by GR. Unexpectedly, we found that GR dramatically inhibited IFN-stimulated gene (ISG) expression in macrophages. The target of inhibition, the heterotrimeric STAT1-STAT2-IRF9 (ISGF3) transcription complex, utilized the GR cofactor GRIP1/TIF2 as a coactivator. Consequently, GRIP1 knockdown, genetic ablation, or depletion by GC-activated GR attenuated ISGF3 promoter occupancy, preinitiation complex assembly, and ISG expression. Furthermore, this regulatory loop was restricted to cell types such as macrophages expressing the GRIP1 protein at extremely low levels, and pharmacological disruption of the GR-GRIP1 interaction or transient introduction of GRIP1 restored RNA polymerase recruitment to target ISGs and the subsequent IFN response. Thus, type I IFN is a cytokine uniquely controlled by GR at the levels of not only production but also signaling through antagonism with the ISGF3 effector function, revealing a novel facet of the immunosuppressive properties of GCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Interferón Tipo I/farmacología , Macrófagos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Células 3T3 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Línea Celular , Células Cultivadas , Dexametasona/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Subunidad alfa del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad alfa del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...