Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877837

RESUMEN

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Clima , Cambio Climático
2.
Ecol Appl ; 31(8): e02433, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339088

RESUMEN

We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.


Asunto(s)
Incendios , Incendios Forestales , Cambio Climático , Bosques , América del Norte
3.
Proc Natl Acad Sci U S A ; 117(47): 29730-29737, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168732

RESUMEN

Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north-south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.


Asunto(s)
Cambio Climático , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Bosques , Incendios Forestales , Sequías , Calor/efectos adversos , Modelos Estadísticos , Pinus ponderosa , Dispersión de las Plantas , Análisis Espacio-Temporal , Estados Unidos
4.
Sci Rep ; 10(1): 18486, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116196

RESUMEN

Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe ecosystems-with drier climates and lower biomass-showed greater drought sensitivity than conifer forests. However, variability in drought sensitivity was considerable within biomes and within ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms and areas with low soil bulk density and high soil available water capacity showed reduced drought sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity patterns discerned from remote sensing can complement plot-scale studies of plant physiological responses to drought to help inform climate-adaptation planning as drought conditions intensify.


Asunto(s)
Biomasa , Cambio Climático , Clima , Sequías , Monitoreo del Ambiente/métodos , Bosques , Ecología , Geografía , Noroeste de Estados Unidos , Suelo , Agua
5.
Sci Rep ; 10(1): 3891, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127547

RESUMEN

Changes in individual climate variables have been widely documented over the past century. However, assessments that consider changes in the collective interaction amongst multiple climate variables are relevant for understanding climate impacts on ecological and human systems yet are less well documented than univariate changes. We calculate annual multivariate climate departures during 1958-2017 relative to a baseline 1958-1987 period that account for covariance among four variables important to Earth's biota and associated systems: annual climatic water deficit, annual evapotranspiration, average minimum temperature of the coldest month, and average maximum temperature of the warmest month. Results show positive trends in multivariate climate departures that were nearly three times that of univariate climate departures across global lands. Annual multivariate climate departures exceeded two standard deviations over the past decade for approximately 30% of global lands. Positive trends in climate departures over the last six decades were found to be primarily the result of changes in mean climate conditions consistent with the modeled effects of anthropogenic climate change rather than changes in variability. These results highlight the increasing novelty of annual climatic conditions viewed through a multivariate lens and suggest that changes in multivariate climate departures have generally outpaced univariate departures in recent decades.

6.
Glob Chang Biol ; 26(5): 2944-2955, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31961042

RESUMEN

Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, 'human exposure', that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non-protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non-protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non-protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Actividades Humanas , Humanos , América del Norte
7.
Proc Natl Acad Sci U S A ; 116(13): 6193-6198, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858310

RESUMEN

Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Incendios Forestales , Altitud , Pinus ponderosa/crecimiento & desarrollo , Pseudotsuga/crecimiento & desarrollo
8.
Ecology ; 100(3): e02589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30801709

RESUMEN

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Asunto(s)
Bosques , Clima Tropical , África , Asia , Biomasa , Carbono/análisis , América del Sur , Árboles
9.
New Phytol ; 221(4): 1814-1830, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30259984

RESUMEN

We modeled hydraulic stress in ponderosa pine seedlings at multiple scales to examine its influence on mortality and forest extent at the lower treeline in the northern Rockies. We combined a mechanistic ecohydrologic model with a vegetation dynamic stress index incorporating intensity, duration and frequency of hydraulic stress events, to examine mortality from loss of hydraulic conductivity. We calibrated our model using a glasshouse dry-down experiment and tested it using in situ monitoring data on seedling mortality from reforestation efforts. We then simulated hydraulic stress and mortality in seedlings within the Bitterroot River watershed of Montana. We show that cumulative hydraulic stress, its legacy and its consequences for mortality are predictable and can be modeled at local to landscape scales. We demonstrate that topographic controls on the distribution and availability of water and energy drive spatial patterns of hydraulic stress. Low-elevation, south-facing, nonconvergent locations with limited upslope water subsidies experienced the highest rates of modeled mortality. Simulated mortality in seedlings from 2001 to 2015 correlated with the current distribution of forest cover near the lower treeline, suggesting that hydraulic stress limits recruitment and ultimately constrains the low-elevation extent of conifer forests within the region.


Asunto(s)
Bosques , Pinus ponderosa/fisiología , Plantones/fisiología , Altitud , Calibración , Hidrología , Montana , Transpiración de Plantas , Estrés Fisiológico
10.
Glob Chang Biol ; 24(11): 5318-5331, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29963741

RESUMEN

As climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north-south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse-filter climate-type-based results complement and contextualize species-specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.


Asunto(s)
Cambio Climático , Adaptación Fisiológica , Animales , Ecosistema , Predicción , Modelos Teóricos , América del Norte , Refugio de Fauna , Especificidad de la Especie
11.
Sci Data ; 5: 170191, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29313841

RESUMEN

We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

12.
Ecol Lett ; 20(6): 779-788, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28414883

RESUMEN

Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth.


Asunto(s)
Ciclo del Carbono , Temperatura , Clima Tropical , Carbono , Bosques , Suelo , Árboles
14.
Nat Commun ; 7: 12349, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27476545

RESUMEN

Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

15.
PLoS One ; 11(8): e0159909, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27509088

RESUMEN

Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Refugio de Fauna , Animales , Ecosistema , Conejos
16.
PLoS One ; 11(5): e0147688, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27196621

RESUMEN

Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.


Asunto(s)
Incendios , Bosques , Pinus ponderosa , Tracheophyta , América del Norte
17.
Conserv Biol ; 29(3): 618-29, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25922899

RESUMEN

Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time-albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Fenómenos Geológicos , Ecología/tendencias
18.
PLoS One ; 10(2): e0114648, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692604

RESUMEN

Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Bosques , Árboles , California , Geografía , Modelos Teóricos , Nevada
19.
Ecol Appl ; 24(5): 1057-69, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25154096

RESUMEN

Correlative species distribution models (SDMs) are widely used in studies of climate change impacts, yet are often criticized for failing to incorporate disturbance processes that can influence species distributions. Here we use two temporally independent data sets of vascular plant distributions, climate data, and fire atlas data to examine the influence of disturbance history on SDM projection accuracy through time in the mountain ranges of California, USA. We used hierarchical partitioning to examine the influence of fire occurrence on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the inclusion of fire-related predictors (fire occurrence and departure from historical fire return intervals) affects SDM projection accuracy. Fire occurrence provided the least explanatory power among predictor variables for predicting species' distributions, but provided improved explanatory power for species whose regeneration is tied closely to fire. A measure of the departure from historic fire return interval had greater explanatory power for calibrating modern SDMs than fire occurrence. This variable did not improve internal model accuracy for most species, although it did provide marginal improvement to models for species adapted to high-frequency fire regimes. Fire occurrence and fire return interval departure were strongly related to the climatic covariates used in SDM development, suggesting that improvements in model accuracy may not be expected due to limited additional explanatory power. Our results suggest that the inclusion of coarse-scale measures of disturbance in SDMs may not be necessary to predict species distributions under climate change, particularly for disturbance processes that are largely mediated by climate.


Asunto(s)
Cambio Climático , Incendios , California , Predicción
20.
New Phytol ; 204(1): 37-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039238

RESUMEN

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Asunto(s)
Fósiles , Modelos Teóricos , Filogeografía , Plantas , Clima , Fagus/fisiología , Cubierta de Hielo , Picea/fisiología , Pseudotsuga/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...