Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 125(1): 28-37, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33941878

RESUMEN

BACKGROUND: This Phase 1 study assessed the safety and efficacy of the Porcupine inhibitor, WNT974, in patients with advanced solid tumours. METHODS: Patients (n = 94) received oral WNT974 at doses of 5-30 mg once-daily, plus additional dosing schedules. RESULTS: The maximum tolerated dose was not established; the recommended dose for expansion was 10 mg once-daily. Dysgeusia was the most common adverse event (50% of patients), likely resulting from on-target Wnt pathway inhibition. No responses were seen by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1; 16% of patients had stable disease (median duration 19.9 weeks). AXIN2 expression by RT-PCR was reduced in 94% of paired skin biopsies (n = 52) and 74% of paired tumour biopsies (n = 35), confirming inhibition of the Wnt pathway. In an exploratory analysis, an inverse association was observed between AXIN2 change and immune signature change in paired tumour samples (n = 8). CONCLUSIONS: Single-agent WNT974 treatment was generally well tolerated. Biomarker analyses suggest that WNT974 may influence immune cell recruitment to tumours, and may enhance checkpoint inhibitor activity. CLINICAL TRIAL REGISTRATION: NCT01351103.


Asunto(s)
Proteína Axina/genética , Inhibidores Enzimáticos/administración & dosificación , Neoplasias/tratamiento farmacológico , Pirazinas/administración & dosificación , Piridinas/administración & dosificación , Administración Oral , Adulto , Anciano , Inhibidores Enzimáticos/farmacocinética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/genética , Pirazinas/farmacocinética , Piridinas/farmacocinética , Resultado del Tratamiento , Vía de Señalización Wnt/efectos de los fármacos
2.
Mol Cancer Res ; 15(12): 1722-1732, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851814

RESUMEN

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) associated cancer characterized by a poor prognosis and a high level of lymphocyte infiltrate. Genetic hallmarks of NPC are not completely known but include deletion of the p16 (CDKN2A) locus and mutations in NF-κB pathway components, with a relatively low total mutational load. To better understand the genetic landscape, an integrated genomic analysis was performed using a large clinical cohort of treatment-naïve NPC tumor specimens. This genomic analysis was generally concordant with previous studies; however, three subtypes of NPC were identified by differences in immune cell gene expression, prognosis, tumor cell morphology, and genetic characteristics. A gene expression signature of proliferation was poorly prognostic and associated with either higher mutation load or specific EBV gene expression patterns in a subtype-specific manner. Finally, higher levels of stromal tumor-infiltrating lymphocytes associated with good prognosis and lower expression of a WNT and TGFß pathway activation signature.Implications: This study represents the first integrated analysis of mutation, copy number, and gene expression data in NPC and suggests how tumor genetics and EBV infection influence the tumor microenvironment in this disease. These insights should be considered for guiding immunotherapy treatment strategies in this disease. Mol Cancer Res; 15(12); 1722-32. ©2017 AACR.


Asunto(s)
Carcinoma/genética , Genoma Humano/genética , Neoplasias Nasofaríngeas/genética , Pronóstico , Microambiente Tumoral/genética , Adulto , Anciano , Carcinoma/patología , Carcinoma/virología , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genómica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Mutación , FN-kappa B/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Factor de Crecimiento Transformador beta/genética , Vía de Señalización Wnt/genética
3.
Clin Cancer Res ; 23(10): 2433-2441, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28432176

RESUMEN

Purpose: The cyclin-dependent kinase (CDK) 4/6 inhibitor, ribociclib (LEE011), displayed preclinical activity in neuroblastoma and malignant rhabdoid tumor (MRT) models. In this phase I study, the maximum tolerated dose (MTD) and recommended phase II dose (RP2D), safety, pharmacokinetics (PK), and preliminary activity of single-agent ribociclib were investigated in pediatric patients with neuroblastoma, MRT, or other cyclin D-CDK4/6-INK4-retinoblastoma pathway-altered tumors.Experimental Design: Patients (aged 1-21 years) received escalating once-daily oral doses of ribociclib (3-weeks-on/1-week-off). Dose escalation was guided by a Bayesian logistic regression model with overdose control and real-time PK.Results: Thirty-two patients (median age, 5.5 years) received ribociclib 280, 350, or 470 mg/m2 Three patients had dose-limiting toxicities of grade 3 fatigue (280 mg/m2; n = 1) or grade 4 thrombocytopenia (470 mg/m2; n = 2). Most common treatment-related adverse events (AE) were hematologic: neutropenia (72% all-grade/63% grade 3/4), leukopenia (63%/38%), anemia (44%/3%), thrombocytopenia (44%/28%), and lymphopenia (38%/19%), followed by vomiting (38%/0%), fatigue (25%/3%), nausea (25%/0%), and QTc prolongation (22%/0%). Ribociclib exposure was dose-dependent at 350 and 470 mg/m2 [equivalent to 600 (RP2D)-900 mg in adults], with high interpatient variability. Best overall response was stable disease (SD) in nine patients (seven with neuroblastoma, two with primary CNS MRT); five patients achieved SD for more than 6, 6, 8, 12, and 13 cycles, respectively.Conclusions: Ribociclib demonstrated acceptable safety and PK in pediatric patients. MTD (470 mg/m2) and RP2D (350 mg/m2) were equivalent to those in adults. Observations of prolonged SD support further investigation of ribociclib combined with other agents in neuroblastoma and MRT. Clin Cancer Res; 23(10); 2433-41. ©2017 AACR.


Asunto(s)
Aminopiridinas/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Renales/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Purinas/administración & dosificación , Tumor Rabdoide/tratamiento farmacológico , Adolescente , Adulto , Aminopiridinas/efectos adversos , Aminopiridinas/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Preescolar , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/clasificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Humanos , Lactante , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Dosis Máxima Tolerada , Neuroblastoma/genética , Neuroblastoma/patología , Purinas/efectos adversos , Purinas/farmacocinética , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Adulto Joven
4.
Oncotarget ; 8(11): 17610-17627, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28407681

RESUMEN

Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFß signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFß and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.


Asunto(s)
Neoplasias de la Mama/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Células Epiteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa , Análisis de Matrices Tisulares , Transcriptoma
5.
J Cell Physiol ; 232(6): 1295-1305, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27627025

RESUMEN

Experimental approaches to define the relationship between gene expression and nuclear matrix attachment regions (MARs) have given contrasting and method-specific results. We have developed a next generation sequencing strategy to identify MARs across the human genome (MAR-Seq). The method is based on crosslinking chromatin to its nuclear matrix attachment sites to minimize changes during biochemical processing. We used this method to compare nuclear matrix organization in MCF-10A mammary epithelial-like cells and MDA-MB-231 breast cancer cells and evaluated the results in the context of global gene expression (array analysis) and positional enrichment of gene-regulatory histone modifications (ChIP-Seq). In the normal-like cells, nuclear matrix-attached DNA was enriched in expressed genes, while in the breast cancer cells, it was enriched in non-expressed genes. In both cell lines, the chromatin modifications that mark transcriptional activation or repression were appropriately associated with gene expression. Using this new MAR-Seq approach, we provide the first genome-wide characterization of nuclear matrix attachment in mammalian cells and reveal that the nuclear matrix-associated genome is highly cell-context dependent. J. Cell. Physiol. 232: 1295-1305, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
ADN/metabolismo , Genoma Humano , Regiones de Fijación a la Matriz/genética , Matriz Nuclear/metabolismo , Neoplasias de la Mama/genética , Línea Celular , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
6.
Clin Cancer Res ; 22(23): 5696-5705, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542767

RESUMEN

PURPOSE: Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb+). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of ribociclib in patients with Rb+ advanced solid tumors or lymphomas. EXPERIMENTAL DESIGN: Patients received escalating doses of ribociclib (3-weeks-on/1-week-off or continuous). Dose escalation was guided by a Bayesian Logistic Regression Model with overdose control principle. RESULTS: Among 132 patients, 125 received ribociclib 3-weeks-on/1-week-off and 7 were dosed continuously. Nine dose-limiting toxicities were observed among 70 MTD/RDE evaluable patients during cycle 1, most commonly neutropenia (n = 3) and thrombocytopenia (n = 2). The MTD and RDE were established as 900 and 600 mg/day 3-weeks-on/1-week-off, respectively. Common treatment-related adverse events were (all-grade; grade 3/4) neutropenia (46%; 27%), leukopenia (43%; 17%), fatigue (45%; 2%), and nausea (42%; 2%). Asymptomatic Fridericia's corrected QT prolongation was specific to doses ≥600 mg/day (9% of patients at 600 mg/day; 33% at doses >600 mg/day). Plasma exposure increases were slightly higher than dose proportional; mean half-life at the RDE was 32.6 hours. Reduced Ki67 was observed in paired skin and tumor biopsies, consistent with ribociclib-mediated antiproliferative activity. There were 3 partial responses and 43 patients achieved a best response of stable disease; 8 patients were progression-free for >6 months. CONCLUSIONS: Ribociclib demonstrated an acceptable safety profile, dose-dependent plasma exposure, and preliminary signs of clinical activity. Phase I-III studies of ribociclib are under way in various indications. Clin Cancer Res; 22(23); 5696-705. ©2016 AACR.


Asunto(s)
Aminopiridinas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Linfoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Purinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Linfoma/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/metabolismo , Adulto Joven
7.
PLoS Genet ; 12(7): e1006120, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27414415

RESUMEN

Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Repeticiones de Dinucleótido , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromosoma X/genética , Secuencias de Aminoácidos , Animales , Sitios de Unión , Evolución Biológica , ADN/química , Femenino , Dosificación de Gen , Genes Ligados a X , Ligamiento Genético , Genoma de los Insectos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN
8.
Nature ; 535(7610): 148-52, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27362227

RESUMEN

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Piperidinas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirimidinas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Concentración 50 Inhibidora , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Desnudos , Modelos Moleculares , Neoplasias/patología , Proteína Oncogénica p21(ras)/metabolismo , Piperidinas/química , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirimidinas/química , Pirimidinas/uso terapéutico , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Oncotarget ; 7(25): 38270-38281, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27223259

RESUMEN

Cancer cells reprogram cellular metabolism to meet the demands of growth. Identification of the regulatory machinery that regulates cancer-specific metabolic changes may open new avenues for anti-cancer therapeutics. The epigenetic regulator BRG1 is a catalytic ATPase for some mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is a well-characterized tumor suppressor in some human cancers, but is frequently overexpressed without mutation in other cancers, including breast cancer. Here we demonstrate that BRG1 upregulates de novo lipogenesis and that this is crucial for cancer cell proliferation. Knockdown of BRG1 attenuates lipid synthesis by impairing the transcription of enzymes catalyzing fatty acid and lipid synthesis. Remarkably, exogenous addition of palmitate, the key intermediate in fatty acid synthesis, rescued the cancer cell proliferation defect caused by BRG1 knockdown. Our work suggests that targeting BRG1 to reduce lipid metabolism and, thereby, to reduce proliferation, has promise for epigenetic therapy in triple negative breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , ADN Helicasas/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lípidos/biosíntesis , Lipogénesis , Proteínas Nucleares/genética , Factores de Transcripción/genética
10.
J Cell Biochem ; 116(9): 2098-108, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25808168

RESUMEN

In tumor cells, two factors are abnormally increased that contribute to metastatic bone disease: Runx2, a transcription factor that promotes expression of metastasis related and osteolytic genes; and IL-11, a secreted osteolytic cytokine. Here, we addressed a compelling question: Does Runx2 regulate IL-11 gene expression? We find a positive correlation between Runx2, IL-11 and TGFß1, a driver of the vicious cycle of metastatic bone disease, in prostate cancer (PC) cell lines representing early (LNCaP) and late (PC3) stage disease. Further, like Runx2 knockdown, IL-11 knockdown significantly reduced expression of several osteolytic factors. Modulation of Runx2 expression results in corresponding changes in IL-11 expression. The IL-11 gene has Runx2, AP-1 sites and Smad binding elements located on the IL-11 promoter. Here, we demonstrated that Runx2-c-Jun as well as Runx2-Smad complexes upregulate IL-11 expression. Functional studies identified a significant loss of IL-11 expression in PC3 cells in the presence of the Runx2-HTY mutant protein, a mutation that disrupts Runx2-Smad signaling. In response to TGFß1 and in the presence of Runx2, we observed a 30-fold induction of IL-11 expression, accompanied by increased c-Jun binding to the IL-11 promoter. Immunoprecipitation and in situ co-localization studies demonstrated that Runx2 and c-Jun form nuclear complexes in PC3 cells. Thus, TGFß1 signaling induces two independent transcriptional pathways - AP-1 and Runx2. These transcriptional activators converge on IL-11 as a result of Runx2-Smad and Runx2-c-Jun interactions to amplify IL-11 gene expression that, together with Runx2, supports the osteolytic pathology of cancer induced bone disease.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Interleucina-11/genética , Neoplasias de la Próstata/genética , Factor de Crecimiento Transformador beta1/farmacología , Sitios de Unión , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-11/química , Interleucina-11/metabolismo , Masculino , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Smad/metabolismo , Regulación hacia Arriba
11.
J Cell Physiol ; 230(11): 2683-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25808524

RESUMEN

The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.


Asunto(s)
Proliferación Celular/genética , ADN Helicasas/biosíntesis , Proteínas Nucleares/biosíntesis , Factores de Transcripción/biosíntesis , Neoplasias de la Mama Triple Negativas/genética , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Animales , Sistemas CRISPR-Cas , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/patología
12.
Nat Genet ; 47(2): 106-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501392

RESUMEN

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Genoma/genética , Neoplasias/genética , Transducción de Señal/genética , Bases de Datos Genéticas , Humanos , Complejos Multiproteicos/genética , Mutación , Neoplasias/diagnóstico
13.
Nucleic Acids Res ; 42(16): 10360-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120271

RESUMEN

Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2. These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter.


Asunto(s)
Cromatina/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Animales , Diferenciación Celular , Línea Celular , Humanos , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Sintenía , Factores de Transcripción/metabolismo
14.
Cancer Cell Int ; 14: 73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120384

RESUMEN

BACKGROUND: For treatment and prevention of metastatic disease, one of the premier challenges is the identification of pathways and proteins to target for clinical intervention. Micro RNAs (miRNAs) are short, non-coding RNAs, which regulate cellular activities by either mRNA degradation or translational inhibition. Our studies focused on the invasive properties of hsa-mir30c based on its high expression in MDA-MB-231 metastatic cells and our bioinformatic analysis of the Cancer Genome Atlas that identified aberrant hsa-mir-30c to be associated with poor survival. METHODS: Contributions of hsa-mir-30c to breast cancer cell invasion were examined by Matrigel invasion transwell assays following modulation of hsa-mir-30c or hsa-mir-30c* levels in MDA-MB-231 cells. hsa-mir-30c in silico predicted targets linked to cell invasion were screened for targeting by hsa-mir-30c in metastatic breast cancer cells by RT-qPCR. The contribution to invasion by a target of hsa-mir-30c, Nephroblastoma overexpressed (NOV), was characterized by siRNA and invasion assays. Significant effects were determined using Student's T-tests with Welch's correction for unequal variance. RESULTS: MCF-7 and MDA-MB-231 cells were used as models of poorly invasive and late-stage metastatic disease, respectively. By modulating the levels of hsa-mir-30c in these cells, we observed concomitant changes in breast cancer cell invasiveness. From predicted targets of hsa-mir-30c that were related to cellular migration and invasion, NOV/CCN3 was identified as a novel target of hsa-mir-30c. Depleting NOV by siRNA caused a significant increase in the invasiveness of MDA-MB-231 cells is a regulatory protein associated with the extracellular matrix. CONCLUSIONS: NOV/CCN3 expression, which protects cells from invasion, is known in patient tumors to inversely correlate with advanced breast cancer and metastasis. This study has identified a novel target of hsa-mir-30c, NOV, which is an inhibitor of the invasiveness of metastatic breast cancer cells. Thus, hsa-mir-30c-mediated inhibition of NOV levels promotes the invasive phenotype of MDA-MB-231 cells and significantly, the miR-30/NOV pathways is independent of RUNX2, a known target of hsa-mir-30c that promotes osteolytic disease in metastatic breast cancer cells. Our findings allow for mechanistic insight into the clinical observation of poor survival of patients with elevated hsa-mir-30c levels, which can be considered for miRNA-based translational studies.

15.
Genome Biol ; 15(3): R52, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655370

RESUMEN

BACKGROUND: Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. RESULTS: By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation--proliferation, matrix deposition and mineralization--we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. CONCLUSIONS: Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma , Osteoblastos/metabolismo , Osteogénesis , Transcripción Genética , Animales , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Redes Reguladoras de Genes , Ratones , Osteoblastos/citología , Regiones Promotoras Genéticas , Unión Proteica
16.
Genome Med ; 6(1): 5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24479672

RESUMEN

High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein sequence or structure. Finally, we review techniques to identify recurrent combinations of somatic mutations, including approaches that examine mutations in known pathways or protein-interaction networks, as well as de novo approaches that identify combinations of mutations according to statistical patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer.

17.
J Cell Sci ; 125(Pt 11): 2732-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22393235

RESUMEN

The osteogenic and oncogenic transcription factor RUNX2 downregulates the RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes histone modifications associated with the rDNA repeat. However, the mechanisms by which RUNX2 suppresses rRNA transcription are not well understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key role in chromatin remodeling and regulation of gene transcription. Here, we show that RUNX2 recruits HDAC1 to the rDNA repeats in osseous cells. This recruitment alters the histone modifications associated with active rRNA-encoding genes and causes deacetylation of the protein upstream binding factor (UBF, also known as UBTF). Downregulation of RUNX2 expression reduces the localization of HDAC1 to the nucleolar periphery and also decreases the association between HDAC1 and UBF. Functionally, depletion of HDAC1 relieves the RUNX2-mediated repression of rRNA-encoding genes and concomitantly increases cell proliferation and global protein synthesis in osseous cells. Our findings collectively identify a RUNX2-HDAC1-dependent mechanism for the regulation of rRNA-encoding genes and suggest that there is plasticity to RUNX2-mediated epigenetic control, which is mediated through selective mitotic exclusion of co-regulatory factors.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Ribosómico/genética , Acetilación , Línea Celular , Nucléolo Celular/metabolismo , Proliferación Celular , Cromatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , ADN Ribosómico/metabolismo , Técnicas de Silenciamiento del Gen , Sitios Genéticos/genética , Histonas/metabolismo , Humanos , Interfase , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , ARN Ribosómico/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética
18.
Breast Cancer Res ; 12(5): R89, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21029421

RESUMEN

INTRODUCTION: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells. METHODS: Here, we addressed whether the functional relationship between cell growth and RUNX2 gene expression is maintained in breast cancer cells. We also investigated whether the aberrant expression of RUNX2 is linked to phenotypic parameters that could provide a selective advantage to cells during breast cancer progression. RESULTS: We find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-MB-231 breast adenocarcinoma cells is enhanced upon growth factor deprivation, as well as upon deactivation of the mitogen-dependent MEK-Erk pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only marginal effects on cell growth and expression of proliferation markers in MDA-MB-231 breast cancer cells. Thus, RUNX2 is not a critical regulator of cell proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-231 cells reduces cell motility, while forced exogenous expression of RUNX2 in MCF7 cells increases cell motility. CONCLUSIONS: Our results support the emerging concept that the osteogenic transcription factor RUNX2 functions as a metastasis-related oncoprotein in non-osseous cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Metástasis de la Neoplasia , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Biomarcadores de Tumor/biosíntesis , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Osteoblastos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
19.
Proc Natl Acad Sci U S A ; 107(9): 4165-9, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160071

RESUMEN

Epigenetic control of ribosomal RNA (rRNA) gene transcription by cell type-specific regulators, such as the osteogenic transcription factor Runx2, conveys cellular memory of growth and differentiation to progeny cells during mitosis. Here, we examined whether coregulatory proteins contribute to epigenetic functions that are mitotically transmitted by Runx2 in osteoblastic cells. We show that the transcriptional corepressor Transducin Like Enhancer-1 (TLE1) associates with rRNA genes during mitosis and interphase through interaction with Runx2. Mechanistically, depletion of TLE1 relieves Runx2-mediated repression of rRNA genes transcription and selectively increases histone modifications linked to active transcription. Biologically, loss of TLE-dependent rRNA gene repression coincides with increased global protein synthesis and enhanced cell proliferation. Our findings reinforce the epigenetic marking target genes by phenotypic transcription factors in mitosis and demonstrate a requirement for retention of coregulatory factors to sustain physiological control of gene expression during proliferation of lineage committed cells.


Asunto(s)
Epigénesis Genética , ARN Ribosómico/genética , Proteínas Represoras/fisiología , Transcripción Genética , Línea Celular Tumoral , Proteínas Co-Represoras , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Región Organizadora del Nucléolo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...