Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2313282120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113257

RESUMEN

An organism's phenotype has been shaped by evolution but the specific processes have to be indirectly inferred for most species. For example, correlations among traits imply the historical action of correlated selection and, more generally, the expression and distribution of traits is expected to be reflective of the adaptive landscapes that have shaped a population. However, our expectations about how quantitative traits-like most behaviors, physiological processes, and life-history traits-should be distributed under different evolutionary processes are not clear. Here, we show that genetic variation in quantitative traits is not distributed as would be expected under dominant evolutionary models. Instead, we found that genetic variation in quantitative traits across six phyla and 60 species (including both Plantae and Animalia) is consistent with evolution across high-dimensional "holey landscapes." This suggests that the leading conceptualizations and modeling of the evolution of trait integration fail to capture how phenotypes are shaped and that traits are integrated in a manner contrary to predictions of dominant evolutionary theory. Our results demonstrate that our understanding of how evolution has shaped phenotypes remains incomplete and these results provide a starting point for reassessing the relevance of existing evolutionary models.


Asunto(s)
Evolución Biológica , Rasgos de la Historia de Vida , Fenotipo , Selección Genética
2.
J Evol Biol ; 35(2): 311-321, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34536964

RESUMEN

Individuals frequently differ consistently from one another in their average behaviours (i.e. 'animal personality') and in correlated suites of consistent behavioural responses (i.e. 'behavioural syndromes'). However, understanding the evolutionary basis of this (co)variation has lagged behind demonstrations of its presence. This lag partially stems from comparative methods rarely being used in the field. Consequently, much of the research on animal personality has relied on 'adaptive stories' focused on single species and populations. Here, we used a comparative approach to examine the role of phylogeny in shaping patterns of average behaviours, behavioural variation and behavioural correlations. In comparing the behaviours and behavioural variation for five species of Gryllid crickets, we found that phylogeny shaped average behaviours and behavioural (co)variation. Despite differences among species, behavioural responses and variation were most similar among more closely related species. These results suggest that phylogenetic constraints play an important role in the expression of animal personalities and behavioural syndromes and emphasize the importance of examining evolutionary explanations within a comparative framework.


Asunto(s)
Conducta Animal , Evolución Biológica , Animales , Conducta Animal/fisiología , Humanos , Personalidad/fisiología , Filogenia , Síndrome
3.
J Anim Ecol ; 89(12): 2813-2824, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32997800

RESUMEN

Animal ecologists often collect hierarchically structured data and analyse these with linear mixed-effects models. Specific complications arise when the effect sizes of covariates vary on multiple levels (e.g. within vs. among subjects). Mean centring of covariates within subjects offers a useful approach in such situations, but is not without problems. A statistical model represents a hypothesis about the underlying biological process. Mean centring within clusters assumes that the lower level responses (e.g. within subjects) depend on the deviation from the subject mean (relative) rather than on the absolute scale of the covariate. This may or may not be biologically realistic. We show that mismatch between the nature of the generating (i.e. biological) process and the form of the statistical analysis produce major conceptual and operational challenges for empiricists. We explored the consequences of mismatches by simulating data with three response-generating processes differing in the source of correlation between a covariate and the response. These data were then analysed by three different analysis equations. We asked how robustly different analysis equations estimate key parameters of interest and under which circumstances biases arise. Mismatches between generating and analytical equations created several intractable problems for estimating key parameters. The most widely misestimated parameter was the among-subject variance in response. We found that no single analysis equation was robust in estimating all parameters generated by all equations. Importantly, even when response-generating and analysis equations matched mathematically, bias in some parameters arose when sampling across the range of the covariate was limited. Our results have general implications for how we collect and analyse data. They also remind us more generally that conclusions from statistical analysis of data are conditional on a hypothesis, sometimes implicit, for the process(es) that generated the attributes we measure. We discuss strategies for real data analysis in face of uncertainty about the underlying biological process.


Asunto(s)
Fenómenos Biológicos , Modelos Estadísticos , Animales , Modelos Lineales
4.
Proc Biol Sci ; 287(1927): 20200183, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32429805

RESUMEN

Behaviours are often correlated within broader syndromes, creating the potential for evolution in one behaviour to drive evolutionary changes in other behaviours. Despite demonstrations that behavioural syndromes are common, this potential for evolutionary effects has not been demonstrated. Here we show that populations of field crickets (Gryllus integer) exhibit a genetically conserved behavioural syndrome structure, despite differences in average behaviours. We found that the distribution of genetic variation and genetic covariance among behavioural traits was consistent with genes and cellular mechanisms underpinning behavioural syndromes rather than correlated selection. Moreover, divergence among populations' average behaviours was constrained by the genetically conserved behavioural syndrome. Our results demonstrate that a conserved genetic architecture linking behaviours has shaped the evolutionary trajectories of populations in disparate environments-illustrating an important way for behavioural syndromes to result in shared evolutionary fates.


Asunto(s)
Conducta Animal , Evolución Biológica , Animales , Gryllidae , Fenotipo
5.
AoB Plants ; 12(2): plaa009, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32257091

RESUMEN

For widely distributed species, understanding the scale over which genetic variation correlates to landscape structure and composition is critical. Particularly within the context of restoration, the evolution of genetic differences may impact success if seeds are maladapted to the restoration environment. In this study, we used Geum triflorum to quantify the scale over which genetic differences for quantitative traits important to adaptation have evolved, comparing the proportion of variance attributed to broad regional- and local population-level effects. Geum triflorum is a widely distributed species spanning a range of environments, including alvar and prairie habitats, which have extreme regional differences in soil-moisture availability. Alvar habitats are regions of thin soil over limestone that experience substantial seasonal variation in water availability, from flooding to desiccation annually. This contrasts with prairie habitats, whose deeper soils mitigate irregular flood-desiccation cycles. Using a common garden experiment, we evaluated 15 traits broadly grouped into three trait classes: resource allocation, stomatal characteristics, and leaf morphological traits for individuals sourced from prairie and alvar environments. We quantified the proportion of trait variance explained by regional- and population-scale effects and compared the proportion of regional- and population-trait variances explained across trait classes. Significant regional differentiation was observed for the majority of quantitative traits; however, population-scale effects were equal or greater than regional effects, suggesting that important genetic differences may have evolved across the finer population scale. Stomatal and resource allocation trait classes exhibited substantial regional differentiation relative to morphological traits, which may indicate increased strength of selection for stomatal and resource allocation traits relative to morphological traits. These patterns point towards the value in considering the scale over which genetic differences may have evolved for widely distributed species and identify different functional trait classes that may be valuable in establishing seed transfer guidelines.

6.
Am Nat ; 195(1): 107-114, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868541

RESUMEN

Theory predicts that body mass should affect the way organisms evolve and use immune defenses. We investigated the relationship between body mass and blood neutrophil and lymphocyte concentrations among more than 250 terrestrial mammalian species. We tested whether existing theories (e.g., protecton theory, immune system complexity, and rate of metabolism) accurately predicted the scaling of immune cell concentrations. We also evaluated the predictive power of body mass for these leukocyte concentrations compared to sociality, diet, life history, and phylogenetic relatedness. Phylogeny explained >70% of variation in both lymphocytes and neutrophils, and body mass appeared more informative than other interspecific trait variation. In the best-fit mass-only model, neutrophils scaled hypermetrically (b=0.11) with body mass, whereas lymphocytes scaled just shallow of isometrically. Extrapolating to total cell numbers, this exponent means that an African elephant circulates 13.3 million times the neutrophils of a house mouse, whereas their masses differ by only 250,000-fold. We hypothesize that such high neutrophil numbers might offset the (i) higher overall parasite exposure that large animals face and/or (ii) the higher relative replication capacities of pathogens to host cells.


Asunto(s)
Peso Corporal/inmunología , Sistema Inmunológico/fisiología , Mamíferos/fisiología , Animales , Evolución Biológica , Mamíferos/inmunología , Modelos Biológicos , Filogenia
7.
Ecol Lett ; 23(1): 107-118, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31646755

RESUMEN

Predators can shape genetic correlations in prey by altering prey perception of risk. We manipulated perceived risk to test whether such non-consumptive effects tightened behavioural trait correlations in wild-caught stickleback from high- compared to low-risk environments due to genetic variation in plasticity. We expected tighter genetic correlations within perceived risk treatments than across them, and tighter genetic correlations in high-risk than in low-risk treatments. We identified genetic variation in plasticity, with genetic correlations between boldness, sociality, and antipredator morphology, as expected, being tighter within treatments than across them, for both of two populations. By contrast, genetic correlations did not tighten with exposure to risk. Tighter phenotypic correlations in wild stickleback may thus arise because predators induce correlational selection on environmental components of these traits, or because predators tighten residual correlations by causing environmental heterogeneity that is controlled in the laboratory. Our study places phenotypic integration firmly into an ecological context.


Asunto(s)
Smegmamorpha , Animales , Fenotipo , Conducta Predatoria
8.
Curr Zool ; 65(5): 493-497, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31616479

RESUMEN

Attributing biological explanations to observed ecogeographical and ecological patterns require eliminating potential statistical and sampling artifacts as alternative explanations of the observed patterns. Here, we assess the role of sample size, statistical power, and geographic inclusivity on the general validity and statistical significance of relationships between body size and latitude for 3 well-studied species of turtles. We extend those analyses to emphasize the importance of using statistically robust data in determining macroecological patterns. We examined intraspecific trends in body size with latitude in Chelydra serpentina, Chrysemys picta, and Trachemys scripta using Pearson's correlations, diagnostic tests for influential points, and resampling. Existing data were insufficient to ascertain a latitudinal trend in body size for C. serpentina or T. scripta. There was a significant relationship for C. picta, however, resampling analyses show that, on average, 16 of the 23 available independent populations were needed to demonstrate a significant relationship and that at least 20 of 23 populations were required to obtain a statistically powerful correlation between body size and latitude. Furthermore, restricting the latitudes of populations resampled shows that body size trends of C. picta were largely due to leveraging effects of populations at the edge of the species range. Our results suggest that broad inferences regarding ecological trends in body size should be made with caution until underlying (intraspecific) patterns in body size can be statistically and conclusively demonstrated.

9.
J Hered ; 110(4): 514-521, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259372

RESUMEN

Theoretical research has outlined how selection may shape both genetic variation and the expression of phenotypic plasticity in multivariate trait space. Specifically, research regarding the evolution of patterns of additive genetic variances and covariances (summarized in matrix form as G) and complementary research into how selection may shape adaptive plasticity lead to the general prediction that G, plasticity, and selection surfaces are all expected to align with each other. However, less well discussed is how this prediction might be assessed and how the modeled theoretical processes are expected to manifest in actual populations. Here, we discuss the theoretical foundations of the overarching prediction of alignment, what alignment mathematically means, how researchers might test for alignment and important caveats to this testing. The most important caveat concerns the fact that, for plasticity, the prediction of alignment only applies to cases where plasticity is adaptive, whereas organisms express considerable plasticity that may be neutral or even maladaptive. We detail the ramifications of these alternative expressions of plasticity vis-à-vis predictions of alignment. Finally, we briefly highlight some important interpretations of deviations from the prediction of alignment and what alignment might mean for populations experiencing environmental and selective changes.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Variación Genética , Selección Genética , Algoritmos , Modelos Genéticos , Fenotipo
10.
J Hered ; 110(4): 403-410, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116388

RESUMEN

The contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)-which is similar to that reported in previous analyses of physiological and life history traits-and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.


Asunto(s)
Conducta , Estudios de Asociación Genética , Patrón de Herencia , Carácter Cuantitativo Heredable , Bases de Datos Genéticas , Marcadores Genéticos , Humanos , Filogenia , Sesgo de Publicación
11.
Gen Comp Endocrinol ; 246: 211-217, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28017731

RESUMEN

The hypothalamic-pituitary-gonadal (HPG) axis, with gonadotropin-releasing hormone (GnRH) initiating the endocrine cascade, regulates testosterone secretion. Testosterone, through its pleiotropic effects, plays a crucial role in coordinating morphology, physiology and behavior in a reproductive context. The concentration of circulating testosterone, however, varies over the course of the day and in response to other internal or external stimuli, potentially making it difficult to relate testosterone sampled at one time point with traits of interest. Many researchers now utilize the administration of exogenous GnRH to elicit a standardized stimulation of testosterone secretion. However, it has remained unclear if and how this exogenously stimulated activation of the HPG axis is related with endogenously regulated testosterone that is capable of influencing testosterone related traits. Repeated measures of a hormone can uncover consistent individual variation in hormonal differences at the HPG axis level, variation that potentially stems from underlying genetic variation in a population experiencing identical environmental cues. Thus, we asked, using the house sparrow (Passer domesticus), how daily endogenous variation in testosterone profiles relates to GnRH-induced testosterone secretion. Further, we explore the relationship between endogenous daily testosterone peaks and GnRH-induced testosterone with badge size, a morphological trait related with status within a social group. We found that GnRH-induced testosterone levels reflect a highly repeatable hormonal phenotype that is strongly correlated with nighttime testosterone levels. The results demonstrate the usefulness of GnRH-induced testosterone in studies aimed at understanding individual variation and selection on endogenously regulated testosterone levels and the potential importance of nighttime testosterone levels to physiology and behavior.


Asunto(s)
Ritmo Circadiano/fisiología , Hormona Liberadora de Gonadotropina/farmacología , Gorriones/fisiología , Testosterona/sangre , Animales , Masculino , Reproducción/fisiología , Medio Social
12.
Horm Behav ; 88: 106-111, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913139

RESUMEN

The immune system plays an important role in enhancing an individual's ability to survive in a world inhabited by pathogens and parasites. The innate immune system is regulated by processes encoded in an individual's genome, providing an avenue for selection to act on this system, as well as the phenotypic relationships generated between this system and other traits of interest. While relationships between innate immunity and endocrine traits (e.g. testosterone) have been reported often in the literature, these relationships are complex and may differ under varying environmental conditions. To better understand the relative contribution of innate immunity (or an endocrine or behavioral trait) to a phenotypic correlation with another trait, an estimation of the underlying heritable genetic variation of the trait of interest is needed. An upper level estimate of the heritability of such traits can be obtained from calculating its repeatability. We conducted a literature review to determine how often repeated samples of measures of innate immune function were conducted and repeatability estimates obtained. This review revealed a very limited number of repeatability estimates, with a large range (0.0-0.9); estimates were exclusively from livestock that have undergone strong artificial selection. This observation of the present literature suggests more work is needed in non-domesticated and free-living animals to begin to understand the underlying genetic contribution of innate immune function to phenotypic correlations of interest (e.g. testosterone and immunity) to behavioral ecologists, evolutionary physiologists and ecoimmunologists.


Asunto(s)
Sistema Endocrino/fisiología , Variación Genética , Sistema Inmunológico/fisiología , Fenotipo , Animales , Ambiente
13.
Curr Zool ; 62(6): 507-511, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29491940

RESUMEN

Groups of organisms-whether multiple species or populations of a single species-can differ in several non-exclusive ways. For example, groups may have diverged phenotypically, genetically, or in the evolutionary responses available to them. We tested for the latter of these-response divergence-between 2 species of woodrats: Neotoma fuscipes and Neotoma macrotis. Based on random skewers analyses we found that, despite being well differentiated both phenotypically and genetically, N. fuscipes and N. macrotis appear to be diverging along a shared evolutionary trajectory (r° = 0.895, P = 0.114). Because these species are currently in secondary contact, their phenotypic evolution being along a shared evolutionary axis has important implications. In particular, that their response to selection arising from interspecific interactions will be constrained along the same evolutionary trajectory may reduce the potential for reinforcing selection to maintain species boundaries.

14.
Proc Biol Sci ; 282(1798): 20142201, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25392476

RESUMEN

Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.


Asunto(s)
Variación Genética , Invertebrados/fisiología , Personalidad/genética , Carácter Cuantitativo Heredable , Vertebrados/fisiología , Animales , Invertebrados/genética , Modelos Genéticos , Vertebrados/genética
15.
Curr Opin Behav Sci ; 6: 111-114, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26858967

RESUMEN

It is now well appreciated that individual animals behave differently from one another and that individual differences in behaviors-personality differences-are maintained through time and across situations. Quantitative genetics has emerged as a conceptual basis for understanding the key ingredients of personality: (co)variation and plasticity. However, the results from quantitative genetic analyses are often divorced from underlying molecular or other proximate mechanisms. This disconnect has the potential to impede an integrated understanding of behavior and is a disconnect present throughout evolutionary ecology. Here we discuss some of the main conceptual connections between personality and quantitative genetics, the relationship of both with genomic tools, and areas that require integration. With its consideration of both trait variation and plasticity, the study of animal personality offers new opportunities to incorporate molecular mechanisms into both the trait partitioning and reaction norm frameworks provided by quantitative genetics.

16.
J Anim Ecol ; 82(1): 39-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23171297

RESUMEN

Growing interest in proximate and ultimate causes and consequences of between- and within-individual variation in labile components of the phenotype - such as behaviour or physiology - characterizes current research in evolutionary ecology. The study of individual variation requires tools for quantification and decomposition of phenotypic variation into between- and within-individual components. This is essential as variance components differ in their ecological and evolutionary implications. We provide an overview of how mixed-effect models can be used to partition variation in, and correlations among, phenotypic attributes into between- and within-individual variance components. Optimal sampling schemes to accurately estimate (with sufficient power) a wide range of repeatabilities and key (co)variance components, such as between- and within-individual correlations, are detailed. Mixed-effect models enable the usage of unambiguous terminology for patterns of biological variation that currently lack a formal statistical definition (e.g. 'animal personality' or 'behavioural syndromes'), and facilitate cross-fertilisation between disciplines such as behavioural ecology, ecological physiology and quantitative genetics.


Asunto(s)
Conducta Animal , Modelos Biológicos , Animales , Ecosistema , Reproducibilidad de los Resultados , Proyectos de Investigación
17.
Oecologia ; 171(1): 153-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22776906

RESUMEN

Population dynamics are typically affected by a combination of density-independent and density-dependent factors, the latter of which have been conceptually and theoretically linked with how variable population sizes are over time-which in turn has been tied to how prone populations are to extinction. To address evidence for the occurrence of density dependence and its relationship with population size variability (pv), we quantified each of these for 126 populations of 8 species of Salmoniformes. Using random-effects models, we partitioned variation in the strength of density dependence and the magnitude of pv between and within species and estimated the correlation of density dependence and population size variability at both the between- and within-species levels. We found that variation in the strength of density dependence was predominately within species (I(2) = 0.12 [corrected] variation in population size variability was distributed both between and within species (I(2) = 0.40). Contrary to theoretical and conceptual expectations, the strength of density dependence and the magnitude of population size variability were positively correlated at the between species level (r = 0.90), although this estimate had 95 % credibility intervals (Bayesian analogues to confidence intervals) that overlapped zero. The within-species correlation between density dependence and population size variability was not distinguishable from zero. Given that density dependence for Salmoniformes was highly variable within species, we next determined the joint effects of intrinsic (density-dependent) and extrinsic (density-independent) factors on the population dynamics of a threatened salmonid, the Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). We found that density-dependent and -independent factors additively contributed to population dynamics. This finding suggests that the observed within-species variability in density dependence might be attributable to local differences in the strength of density-independent factors.


Asunto(s)
Tamaño Corporal , Salmoniformes/anatomía & histología , Animales , Modelos Teóricos , Densidad de Población
18.
Ecology ; 93(6): 1330-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22834374

RESUMEN

Many models of selection predict that populations will lose variation in traits that affect fitness. Nonetheless, phenotypic variation is commonly observed in natural populations. We tested the influences of competition and spatial heterogeneity on behavioral variation within and among populations of Merriam's kangaroo rats (Dipodomys merriami) and tested for the differential expression of trait correlations. We found that populations of D. merriami exhibited more aggression at sites with more competition. Contrary to theoretical predictions and empirical results in other systems, the sites with the greatest spatial heterogeneity and highest levels of competition did not exhibit the most behavioral variation among individuals. However, the greatest within-individual behavioral variability in boldness (response to cues of predator presence) was exhibited where spatial heterogeneity was highest. Aggression and boldness of D. merriami were highly repeatable, that is, individuals behaved in a consistent manner over time, and the two behaviors were also highly correlated. Interestingly, the strength of this correlation was greatest where the competitive community was least diverse. These findings add to increasing evidence that natural populations of animals exhibit patterns of behavioral covariance, or personality structure, and suggest that competitive variation may act to erode personality structure.


Asunto(s)
Conducta Animal/fisiología , Dipodomys/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Animales
19.
Ecol Lett ; 15(9): 986-92, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22731810

RESUMEN

Many animal populations display consistent individual differences in suites of correlated behaviours. While these so called 'animal personalities' can substantially influence the ecology and evolution of populations, little is known about cross-sex correlations of behaviour and thus the potential of personality to limit sex-specific behavioural adaptations. Here, we experimentally induced sex-change in the sequentially hermaphroditic reef fish Parapercis cylindrica and demonstrate the existence of tight cross-sex correlations for two behaviours with presumed different sex-specific optima. Individuals that were relatively more active and aggressive females were found to become relatively more active and aggressive males. By identifying personality as a potential genetic constraint on the resolution of intralocus sexual conflict over behaviour, our findings have important ecological and evolutionary implications for a wide range of species.


Asunto(s)
Agresión , Trastornos del Desarrollo Sexual , Peces , Animales , Conducta Animal , Evolución Biológica , Arrecifes de Coral , Femenino , Masculino , Personalidad , Fenotipo , Dinámica Poblacional , Reproducción
20.
Evolution ; 65(6): 1814-20, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21644966

RESUMEN

Recent research regarding correlations among behaviors--under the labels of behavioral syndromes and animal personalities--has typically assumed that phenotypic correlations between behaviors are representative of underling genetic correlations. However, for behaviors, the concordance between phenotypic and genetic correlations has not been rigorously examined. I tested this assumption using published estimates and found phenotypic and genetic correlations to be strongly related but found that the average absolute difference between the two was quite high and similar to that observed in other traits. Using absolute differences as the sole criterion, phenotypic correlations do not reliably estimate the magnitude of genetic correlations for behaviors, which is problematic for behavioral syndrome researchers. However, phenotypic correlations explained 75% of the variation in genetic correlations and their sign was typically the same as that of genetic correlations. This suggests that phenotypic correlations between behaviors reliably estimate the direction of underling genetic relationships and provide considerable information regarding the magnitude of genetic correlations. Thus, if researchers are careful about the questions they ask, phenotypic correlations between behaviors can be informative regarding underling genetic correlations and their evolutionary implications.


Asunto(s)
Conducta Animal , Evolución Biológica , Modelos Biológicos , Animales , Variación Genética , Genotipo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...