Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neuroinform ; 17: 1215261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720825

RESUMEN

Introduction: Open science initiatives have enabled sharing of large amounts of already collected data. However, significant gaps remain regarding how to find appropriate data, including underutilized data that exist in the long tail of science. We demonstrate the NeuroBridge prototype and its ability to search PubMed Central full-text papers for information relevant to neuroimaging data collected from schizophrenia and addiction studies. Methods: The NeuroBridge architecture contained the following components: (1) Extensible ontology for modeling study metadata: subject population, imaging techniques, and relevant behavioral, cognitive, or clinical data. Details are described in the companion paper in this special issue; (2) A natural-language based document processor that leveraged pre-trained deep-learning models on a small-sample document corpus to establish efficient representations for each article as a collection of machine-recognized ontological terms; (3) Integrated search using ontology-driven similarity to query PubMed Central and NeuroQuery, which provides fMRI activation maps along with PubMed source articles. Results: The NeuroBridge prototype contains a corpus of 356 papers from 2018 to 2021 describing schizophrenia and addiction neuroimaging studies, of which 186 were annotated with the NeuroBridge ontology. The search portal on the NeuroBridge website https://neurobridges.org/ provides an interactive Query Builder, where the user builds queries by selecting NeuroBridge ontology terms to preserve the ontology tree structure. For each return entry, links to the PubMed abstract as well as to the PMC full-text article, if available, are presented. For each of the returned articles, we provide a list of clinical assessments described in the Section "Methods" of the article. Articles returned from NeuroQuery based on the same search are also presented. Conclusion: The NeuroBridge prototype combines ontology-based search with natural-language text-mining approaches to demonstrate that papers relevant to a user's research question can be identified. The NeuroBridge prototype takes a first step toward identifying potential neuroimaging data described in full-text papers. Toward the overall goal of discovering "enough data of the right kind," ongoing work includes validating the document processor with a larger corpus, extending the ontology to include detailed imaging data, and extracting information regarding data availability from the returned publications and incorporating XNAT-based neuroimaging databases to enhance data accessibility.

2.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37577598

RESUMEN

Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.

3.
Sci Rep ; 12(1): 7050, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488032

RESUMEN

Associating brain systems with mental processes requires statistical analysis of brain activity across many cognitive processes. These analyses typically face a difficult compromise between scope-from domain-specific to system-level analysis-and accuracy. Using all the functional Magnetic Resonance Imaging (fMRI) statistical maps of the largest data repository available, we trained machine-learning models that decode the cognitive concepts probed in unseen studies. For this, we leveraged two comprehensive resources: NeuroVault-an open repository of fMRI statistical maps with unconstrained annotations-and Cognitive Atlas-an ontology of cognition. We labeled NeuroVault images with Cognitive Atlas concepts occurring in their associated metadata. We trained neural networks to predict these cognitive labels on tens of thousands of brain images. Overcoming the heterogeneity, imbalance and noise in the training data, we successfully decoded more than 50 classes of mental processes on a large test set. This success demonstrates that image-based meta-analyses can be undertaken at scale and with minimal manual data curation. It enables broad reverse inferences, that is, concluding on mental processes given the observed brain activity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cognición , Cabeza , Imagen por Resonancia Magnética/métodos
4.
Gigascience ; 10(9)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34585237

RESUMEN

Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted from a cohort that differs from the target population. Such a mismatch, known as a dataset shift, can undermine the application of the biomarker to new individuals. Dataset shifts are frequent in biomedical research, e.g., because of recruitment biases. When a dataset shift occurs, standard machine-learning techniques do not suffice to extract and validate biomarkers. This article provides an overview of when and how dataset shifts break machine-learning-extracted biomarkers, as well as detection and correction strategies.


Asunto(s)
Algoritmos , Aprendizaje Automático , Biomarcadores , Humanos
5.
Elife ; 92020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32129761

RESUMEN

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Metaanálisis como Asunto , Productos Biológicos , Interpretación Estadística de Datos , Bases de Datos Factuales , Humanos , Análisis Multivariante , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...