Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 14: 373, 2013 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-23725015

RESUMEN

BACKGROUND: Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. RESULTS: We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae's natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. CONCLUSIONS: This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae's tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens.


Asunto(s)
Escarabajos/microbiología , Genoma Fúngico/genética , Ophiostoma/genética , Ophiostoma/fisiología , Pinus/microbiología , Transcriptoma , Animales , Manosa/farmacología , Anotación de Secuencia Molecular , Ácido Oléico/farmacología , Ophiostoma/efectos de los fármacos , Ophiostoma/crecimiento & desarrollo , Especificidad de la Especie , Triglicéridos/farmacología , Madera/microbiología
2.
J Pathol ; 226(1): 7-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22072542

RESUMEN

Oligodendroglioma is characterized by unique clinical, pathological, and genetic features. Recurrent losses of chromosomes 1p and 19q are strongly associated with this brain cancer but knowledge of the identity and function of the genes affected by these alterations is limited. We performed exome sequencing on a discovery set of 16 oligodendrogliomas with 1p/19q co-deletion to identify new molecular features at base-pair resolution. As anticipated, there was a high rate of IDH mutations: all cases had mutations in either IDH1 (14/16) or IDH2 (2/16). In addition, we discovered somatic mutations and insertions/deletions in the CIC gene on chromosome 19q13.2 in 13/16 tumours. These discovery set mutations were validated by deep sequencing of 13 additional tumours, which revealed seven others with CIC mutations, thus bringing the overall mutation rate in oligodendrogliomas in this study to 20/29 (69%). In contrast, deep sequencing of astrocytomas and oligoastrocytomas without 1p/19q loss revealed that CIC alterations were otherwise rare (1/60; 2%). Of the 21 non-synonymous somatic mutations in 20 CIC-mutant oligodendrogliomas, nine were in exon 5 within an annotated DNA-interacting domain and three were in exon 20 within an annotated protein-interacting domain. The remaining nine were found in other exons and frequently included truncations. CIC mutations were highly associated with oligodendroglioma histology, 1p/19q co-deletion, and IDH1/2 mutation (p < 0.001). Although we observed no differences in the clinical outcomes of CIC mutant versus wild-type tumours, in a background of 1p/19q co-deletion, hemizygous CIC mutations are likely important. We hypothesize that the mutant CIC on the single retained 19q allele is linked to the pathogenesis of oligodendrogliomas with IDH mutation. Our detailed study of genetic aberrations in oligodendroglioma suggests a functional interaction between CIC mutation, IDH1/2 mutation, and 1p/19q co-deletion.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Oligodendroglioma/genética , Proteínas Represoras/genética , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Supervivencia sin Enfermedad , Humanos , Estimación de Kaplan-Meier , Mutación , Clasificación del Tumor , Oligodendroglioma/mortalidad , Oligodendroglioma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...