Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Allergy ; 70(5): 556-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25683166

RESUMEN

BACKGROUND: Mast cell localization within the airway smooth muscle (ASM)-bundle plays an important role in the development of airway hyper-responsiveness (AHR). Genomewide association studies implicate the 'alarmin' IL-33 in asthma, but its role in mast cell-ASM interactions is unknown. OBJECTIVES: We examined the expression and functional role of IL-33 in bronchial biopsies of patients with and without asthma, ex vivo ASM, mast cells, cocultured cells and in a mouse model system. METHODS: IL-33 protein expression was assessed in human bronchial tissue from 9 healthy controls, and 18 mild-to-moderate and 12 severe asthmatic patients by immunohistochemistry. IL-33 and ST2 mRNA and protein expression in human-derived ASM, epithelial and mast cells were assessed by qPCR, immunofluorescence and/or flow cytometry and ELISA. Functional assays were used to assess calcium signalling, wound repair, proliferation, apoptosis and contraction. AHR and inflammation were assessed in a mouse model. RESULTS: Bronchial epithelium and ASM expressed IL-33 with the latter in asthma correlating with AHR. ASM and mast cells expressed intracellular IL-33 and ST2. IL-33 stimulated mast cell IL-13 and histamine secretion independent of FcεR1 cross-linking and directly promoted ASM wound repair. Coculture of mast cells with ASM activated by IL-33 increased agonist-induced ASM contraction, and in vivo IL-33 induced AHR in a mouse cytokine installation model; both effects were IL-13 dependent. CONCLUSION: IL-33 directly promotes mast cell activation and ASM wound repair but indirectly promotes ASM contraction via upregulation of mast cell-derived IL-13. This suggests that IL-33 may present an important target to modulate mast cell-ASM crosstalk in asthma.


Asunto(s)
Asma/inmunología , Interleucina-13/inmunología , Interleucina-33/inmunología , Mastocitos/inmunología , Receptor Cross-Talk/inmunología , Adulto , Animales , Hiperreactividad Bronquial/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Músculo Liso/inmunología , Músculo Liso/metabolismo , Reacción en Cadena de la Polimerasa
2.
J Pharmacol Toxicol Methods ; 63(3): 258-68, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21194571

RESUMEN

INTRODUCTION: Nonclinical in vivo models used for cardiovascular safety testing have not previously been studied for their sensitivity for detection of conduction slowing resulting from cardiac sodium channel block. The goal of this study was to examine the sensitivity of in vivo models to cardiac sodium channel block, and translation of the effect from in vitro to in vivo models using sodium channel inhibitors flecainide and mexiletine; flecainide, but not mexiletine is commonly associated with QRS complex prolongation in humans. METHODS: Inhibition of cloned cardiac sodium channels (hNav1.5) was studied using the IonWorks platform. Conduction slowing was measured in vitro in the rabbit isolated ventricular wedge (RVW) and in vivo in the conscious telemetered rat and dog, and anaesthetised dog. RESULTS: Flecainide and mexiletine inhibited hNav1.5 channels with IC50 values of 10.7 and 67.2 µM respectively. In the RVW, QRS was increased by flecainide at 60 bpm, and at 120bpm, there was an increased effect of both drugs. In conscious rats, flecainide significantly increased QRS complex duration; mexiletine had no significant effect, but there was an increase at the highest dose in 4/6 animals. QRS complex was increased by flecainide and mexiletine in anaesthetised dogs but this was not statistically significant; in conscious dog, only flecainide produced a significant increase in QRS complex. DISCUSSION: When compared to clinical data, effects of flecainide and mexiletine in RVW and conscious dog compared well with effects in patients and healthy volunteers in terms of sensitivity. The anaesthetised dog was least sensitive for detection of changes in QRS. All assays showed some differentiation between the expected conduction slowing activity of flecainide and mexiletine. Based on these data, RVW and conscious dog were most predictive for effects of compounds on QRS complex and cardiac conduction.


Asunto(s)
Flecainida/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Mexiletine/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular , Ensayos Clínicos como Asunto , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Electrocardiografía , Femenino , Flecainida/sangre , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Mexiletine/sangre , Canal de Sodio Activado por Voltaje NAV1.5 , Unión Proteica , Conejos , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/sangre , Canales de Sodio/genética , Transfección
3.
Thorax ; 64(8): 671-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19213775

RESUMEN

BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated as an important mediator in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). However, the expression of GM-CSF and its receptor in airway samples in asthma and COPD across disease severity needs to be further defined. METHODS: Sputum GM-CSF was measured in 18 control subjects, 45 subjects with asthma and 47 subjects with COPD. Enumeration of GM-CSF+ cells in the bronchial submucosa and airway smooth muscle bundle was performed in 29 control subjects, 36 subjects with asthma and 10 subjects with COPD. RESULTS: The proportion of subjects with measurable GM-CSF in the sputum was raised in those with moderate (7/14) and severe (11/18) asthma, and in those with COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II (7/16), III (8/17) and IV (7/14) compared with controls (1/18) and those with mild asthma (0/13); p = 0.001. The sputum GM-CSF concentration was correlated with the sputum eosinophilia in subjects with moderate to severe asthma (r(s) = 0.41; p = 0.018). The median (interquartile range) GM-CSF+ and GM-CSFR+ cells/mm(2) of submucosa was increased in severe asthma (1.4 (3.0) and 2.1 (8.4)) compared with those with mild to moderate asthma (0 (2.5) and 1.1 (5)) and healthy controls (0 (0.5) and 0 (1.6)), (p = 0.004 and p = 0.02, respectively). CONCLUSIONS: The findings support a potential role for GM-CSF in asthma and COPD and suggest that overexpression of GM-CSF in sputum and the bronchial mucosa is a particular feature of severe asthma.


Asunto(s)
Asma/metabolismo , Bronquios/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Esputo/metabolismo , Anciano , Asma/patología , Bronquios/patología , Estudios Transversales , Eosinófilos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología
4.
Development ; 128(24): 5005-15, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11748137

RESUMEN

Amphiphysin family members are implicated in synaptic vesicle endocytosis, actin localization and one isoform is an autoantigen in neurological autoimmune disorder; however, there has been no genetic analysis of Amphiphysin function in higher eukaryotes. We show that Drosophila Amphiphysin is localized to actin-rich membrane domains in many cell types, including apical epithelial membranes, the intricately folded apical rhabdomere membranes of photoreceptor neurons and the postsynaptic density of glutamatergic neuromuscular junctions. Flies that lack all Amphiphysin function are viable, lack any observable endocytic defects, but have abnormal localization of the postsynaptic proteins Discs large, Lethal giant larvae and Scribble, altered synaptic physiology, and behavioral defects. Misexpression of Amphiphysin outside its normal membrane domain in photoreceptor neurons results in striking morphological defects. The strong misexpression phenotype coupled with the mild mutant and lack of phenotypes suggests that Amphiphysin acts redundantly with other proteins to organize specialized membrane domains within a diverse array of cell types.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas de Drosophila , Proteínas del Tejido Nervioso/aislamiento & purificación , Unión Neuromuscular/química , Sinapsis/química , Membranas Sinápticas/química , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Compartimento Celular , Polaridad Celular , Drosophila , Endocitosis , Proteínas del Ojo/genética , Proteínas del Ojo/aislamiento & purificación , Larva , Datos de Secuencia Molecular , Morfogénesis , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/embriología , Unión Neuromuscular/patología , Células Fotorreceptoras de Invertebrados/ultraestructura , Isoformas de Proteínas/genética , Homología de Secuencia de Aminoácido , Sinapsis/patología , Membranas Sinápticas/patología , Vesículas Sinápticas
5.
Dev Cell ; 1(5): 587-8, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11709176

RESUMEN

A recent study identifies a novel nonautonomous signaling pathway that regulates cell migration and differentiation in early Drosophila mesodermal tissues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Mesodermo/citología , Transducción de Señal , Animales , Diferenciación Celular , Movimiento Celular , Drosophila/citología , Proteínas de Drosophila/genética , Mesodermo/metabolismo , Morfogénesis
6.
Development ; 128(20): 4103-12, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11641232

RESUMEN

In many organisms, single neural stem cells can generate both neurons and glia. How are these different cell types produced from a common precursor? In Drosophila, glial cells missing (gcm) is necessary and sufficient to induce glial development in the CNS. gcm mRNA has been reported to be asymmetrically localized to daughter cells during precursor cell division, allowing the daughter cell to produce glia while precursor cell generates neurons. We show that (1) gcm mRNA is uniformly distributed during precursor cell divisions; (2) the Prospero transcription factor is asymmetrically localized into the glial-producing daughter cell; (3) Prospero is required to upregulate gcm expression and induce glial development; and (4) mislocalization of Prospero to the precursor cell leads to ectopic gcm expression and the production of extra glia. We propose a novel model for the separation of glia and neuron fates in mixed lineages in which the asymmetric localization of Prospero results in upregulation of gcm expression and initiation of glial development in only precursor daughter cells.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas de Drosophila , Drosophila/embriología , Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción , Animales , Diferenciación Celular , Movimiento Celular , Polaridad Celular , Sistema Nervioso Central/citología , Proteínas de Unión al ADN , Drosophila/genética , Genes de Insecto , Hibridación Fluorescente in Situ , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Distribución Tisular , Transactivadores/genética , Transactivadores/metabolismo
7.
Cell ; 106(4): 511-21, 2001 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-11525736

RESUMEN

Neural precursors often generate distinct cell types in a specific order, but the intrinsic or extrinsic cues regulating the timing of cell fate specification are poorly understood. Here we show that Drosophila neural precursors (neuroblasts) sequentially express the transcription factors Hunchback --> Krüppel --> Pdm --> Castor, with differentiated progeny maintaining the transcription factor profile present at their birth. Hunchback is necessary and sufficient for first-born cell fates, whereas Krüppel is necessary and sufficient for second-born cell fates; this is observed in multiple lineages and is independent of the cell type involved. We propose that Hunchback and Krüppel control early-born temporal identity in neuroblast cell lineages.


Asunto(s)
Linaje de la Célula/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Neuronas/fisiología , Proteínas Represoras , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles/genética , Hormonas Juveniles/metabolismo , Factores de Transcripción de Tipo Kruppel , Morfogénesis/genética , Morfogénesis/fisiología , Neuronas/citología , Factores del Dominio POU , Factores de Tiempo , Factores de Transcripción/genética
8.
Curr Opin Cell Biol ; 13(1): 68-75, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11163136

RESUMEN

Both Drosophila neuroblasts and Caenorhabditis elegans zygotes use a conserved protein complex to establish cell polarity and regulate spindle orientation. Mammalian epithelia also use this complex to regulate apical/basal polarity. Recent results have allowed us to compare the mechanisms regulating asymmetric cell division in Drosophila neuroblasts and the C. elegans zygote.


Asunto(s)
Caenorhabditis elegans/embriología , Drosophila/embriología , Sistema Nervioso/embriología , Neuronas/citología , Cigoto/citología , Animales , Caenorhabditis elegans/citología , División Celular/fisiología , Polaridad Celular/fisiología , Drosophila/citología , Humanos , Sistema Nervioso/citología , Neuronas/fisiología , Cigoto/crecimiento & desarrollo
9.
Nat Cell Biol ; 3(1): E7-9, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11146637
10.
Nature ; 408(6812): 596-600, 2000 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11117748

RESUMEN

Drosophila neuroblasts are a model system for studying asymmetric cell division: they divide unequally to produce an apical neuroblast and a basal ganglion mother cell that differ in size, mitotic activity and developmental potential. During neuroblast mitosis, an apical protein complex orients the mitotic spindle and targets determinants of cell fate to the basal cortex, but the mechanism of each process is unknown. Here we show that the tumour-suppressor genes lethal giant larvae (lgl) and discs large (dlg) regulate basal protein targeting, but not apical complex formation or spindle orientation, in both embryonic and larval neuroblasts. Dlg protein is apically enriched and is required for maintaining cortical localization of Lgl protein. Basal protein targeting requires microfilament and myosin function, yet the lgl phenotype is strongly suppressed by reducing levels of myosin II. We conclude that Dlg and Lgl promote, and myosin II inhibits, actomyosin-dependent basal protein targeting in neuroblasts.


Asunto(s)
Diacetil/análogos & derivados , Proteínas de Drosophila , Genes Supresores de Tumor , Proteínas de Insectos/genética , Neuronas/citología , Proteínas Supresoras de Tumor , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Polaridad Celular , Diacetil/farmacología , Drosophila , Genes de Insecto , Proteínas de Insectos/fisiología , Mitosis , Datos de Secuencia Molecular , Miosinas/antagonistas & inhibidores , Miosinas/fisiología , Transporte de Proteínas
11.
Mol Gen Genet ; 263(6): 889-97, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10954073

RESUMEN

SpCCE1 (YDC2) from Schizosaccharomyces pombe is a DNA structure-specific endonuclease that resolves Holliday junctions in vitro. To investigate the in vivo function of SpCCE1 we made an Spcce1:ura4+ insertion mutant strain. This strain is viable and, despite being devoid of the Holliday junction resolvase activity that is readily detected in fractionated extracts from wild-type cells, exhibits normal levels of UV sensitivity and spontaneous or UV-induced mitotic recombination. In accordance with the absence of a nuclear phenotype, we show by fluorescence microscopy that a SpCCE1-GFP fusion localises exclusively to the mitochondria of S. pombe. In Saccharomyces cerevisiae the homologue of SpCCE1, CCE1, is known to function in the mitochondria where its role appears to be to remove recombination junctions and thus facilitate mitochondrial DNA segregation. A similar function can probably be attributed to SpCCE1 in S. pombe, since the majority of mitochondrial DNA from the Spcce1::ura4- strain is in an aggregated form apparently due to extensive interlinking of DNA molecules by recombination junctions. Surprisingly, this marked effect on the conformation of mitochondrial DNA results in little or no effect on proliferation or viability of the Spcce1::ura4+ strain. Possible explanations are discussed.


Asunto(s)
ADN Mitocondrial/metabolismo , Endodesoxirribonucleasas/aislamiento & purificación , Mitocondrias/enzimología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Compartimento Celular , Endodesoxirribonucleasas/genética , Resolvasas de Unión Holliday , Mutagénesis Insercional , Schizosaccharomyces/enzimología
12.
Dev Biol ; 224(2): 362-72, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10926773

RESUMEN

An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh)-which are expressed in ventral, intermediate, and dorsal columns of neuroectoderm, respectively. Previous studies have shown that the Dorsal, Decapentaplegic (Dpp), and EGF receptor (Egfr) signaling pathways regulate embryonic DV patterning, as well as aspects of CNS patterning. Here we describe the earliest expression of each DV column gene (vnd, ind, and msh), the regulatory relationships between all three DV column genes, and the role of the Dorsal, Dpp, and Egfr signaling pathways in defining vnd, ind, and msh expression domains. We confirm that the vnd domain is established by Dorsal and maintained by Egfr, but unlike a previous report we show that vnd is not regulated by Dpp signaling. We show that ind expression requires both Dorsal and Egfr signaling for activation and positioning of its dorsal border, and that abnormally high Dpp can repress ind expression. Finally, we show that the msh domain is defined by repression: it occurs only where Dpp, Vnd, and Ind activity is low. We conclude that the initial diversification of cell fates along the DV axis of the CNS is coordinately established by Dorsal, Dpp, and Egfr signaling pathways. Understanding the mechanisms involved in patterning vnd, ind, and msh expression is important, because DV columnar homeobox gene expression in the neuroectoderm is an early, essential, and evolutionarily conserved step in generating neuronal diversity along the DV axis of the CNS.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Drosophila/embriología , Receptores ErbB/metabolismo , Proteínas de Insectos/metabolismo , Sistema Nervioso/embriología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción , Animales , Drosophila/metabolismo , Sistema Nervioso/metabolismo
13.
EMBO J ; 19(11): 2751-62, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10835372

RESUMEN

A key stage during homologous recombination is the processing of the Holliday junction, which determines the outcome of the recombination reaction. To dissect the pathways of Holliday junction processing in a eukaryote, we have targeted an Escherichia coli Holliday junction resolvase to the nuclei of fission yeast recombination-deficient mutants and analysed their phenotypes. The resolvase partially complements the UV and hydroxyurea hypersensitivity and associated aberrant mitoses of an rqh1(-) mutant. Rqh1 is a member of the RecQ subfamily of DNA helicases that control recombination particularly during S-phase. Significantly, overexpression of the resolvase in wild-type cells partly mimics the loss of viability, hyper-recombination and 'cut' phenotype of an rqh1(-) mutant. These results indicate that Holliday junctions form in wild-type cells that are normally removed in a non-recombinogenic way, possibly by Rqh1 catalysing their reverse branch migration. We propose that in the absence of Rqh1, replication fork arrest results in the accumulation of Holliday junctions, which can either impede sister chromatid segregation or lead to the formation of recombinants through Holliday junction resolution.


Asunto(s)
ADN Helicasas/deficiencia , Endodesoxirribonucleasas/fisiología , Proteínas de Escherichia coli , Escherichia coli/enzimología , Proteínas Fúngicas/fisiología , Resolvasas de Unión Holliday , Recombinación Genética/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Núcleo Celular/metabolismo , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/genética , Células Eucariotas/metabolismo , Proteínas Fúngicas/genética , Genes Reporteros , Genes Sintéticos , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Modelos Genéticos , Señales de Localización Nuclear , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Fenotipo , Tolerancia a Radiación/genética , Proteínas Recombinantes de Fusión/fisiología , Fase S , Schizosaccharomyces/metabolismo , Schizosaccharomyces/efectos de la radiación , Rayos Ultravioleta
14.
Hum Mol Genet ; 9(5): 675-84, 2000 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-10749974

RESUMEN

Childhood onset spinal muscular atrophy (SMA) is a common autosomal recessive disorder primarily characterized by the loss of lower alpha motor neurons. The underlying chromosomal defects causing SMA have been found in the survival motor neuron (SMN) gene. SMN has been shown previously to play a role in both snRNP biogenesis and mRNA processing, although direct evidence for the relationship between SMN and disease pathology has not been elucidated. SMN orthologues have been isolated in many species including Caenorhabditis elegans and Danio rerio. To study the function of SMN, we have identified and characterized the Schizosaccharomyces pombe orthologue of human SMN, smn1 (+). We have demonstrated that smn1 (+) is essential for viability in S.pombe and yeast expressing missense mutations in Smn1p, which mimic mutations in patients with Type I SMA, show significant mislocalization of the protein and a decrease in cell viability. Wild-type Smn1p is localized predominantly in the nucleus whereas yeast expressing Smn1p with missense mutations or deletions of specific domains of the protein accumulate cytoplasmic aggregates. Overexpression of Smn1p results in an increase in the growth rate of cells. Furthermore, mutations within two highly conserved protein interaction domains have a dominant-negative effect on growth, indicating that each domain is of functional significance in S.pombe. These dominant phenotypes can be suppressed by overexpression of murine Smn in the same cell. Given the structural and functional similarities between the protein in fission yeast and higher eukaryotes, S.pombe will be an ideal organism to study the role of SMN in RNA processing.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/química , Proteínas de Unión al ARN , Proteínas del Complejo SMN , Homología de Secuencia de Aminoácido , Proteína 1 para la Supervivencia de la Neurona Motora
16.
J Pharmacol Toxicol Methods ; 43(2): 125-31, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11150740

RESUMEN

Congestive heart failure (CHF) is a complex, multifactoral disease involving genetic and environmental factors that represents a large unmet medical need. There are currently many animal models of CHF that have provided some insight into the etiology of this disease. However, due to the complex interactions of environmental and genetic components of this disease most animal models are somewhat limited. Nonhuman primates offer a unique opportunity to investigate the genetic aspects of this complex disease due to their close genetic and phenotypic similarity to humans. Here we describe a novel tachycardia-induced primate model of CHF characterized by depressed global function that progresses to a symptomatic stage consistent with clinical data. No animal model, including this one, can exactly mimic the clinical pathophysiology of CHF. However, this tachycardia-induced primate model of CHF has similarities to the dynamic state of CHF in humans and affords the opportunity to evaluate changes in gene expression using genomic and proteomic technologies throughout the progression of the disease.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Taquicardia/complicaciones , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Macaca fascicularis , Disfunción Ventricular Izquierda/etiología
17.
Development ; 126(21): 4653-89, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10518486

RESUMEN

An experimental analysis of neurogenesis requires a detailed understanding of wild-type neural development. Recent DiI cell lineage studies have begun to elucidate the family of neurons and glia produced by each Drosophila embryonic neural precursor (neuroblast). Here we use DiI labeling to extend and clarify previous studies, but our analysis differs from previous studies in four major features: we analyze and compare lineages of every known embryonic neuroblast; we use an in vivo landmark (engrailed-GFP) to increase the accuracy of neuroblast identification; we use confocal fluorescence and Nomarski microscopy to collect three-dimensional data in living embryos simultaneously for each DiI-labeled clone, the engrailed-GFP landmark, and the entire CNS and muscle target field (Nomarski images); and finally, we analyze clones very late in embryonic development, which reveals novel cell types and axon/dendrite complexity. We identify the parental neuroblasts for all the cell types of the embryonic CNS: motoneurons, intersegmental interneurons, local interneurons, glia and neurosecretory cells (whose origins had never been determined). We identify muscle contacts for every thoracic and abdominal motoneuron at stage 17. We define the parental neuroblasts for neurons or glia expressing well-known molecular markers or neurotransmitters. We correlate Drosophila cell lineage data with information derived from other insects. In addition, we make the following novel conclusions: (1) neuroblasts at similar dorsoventral positions, but not anteroposterior positions, often generate similar cell lineages, and (2) neuroblasts at similar dorsoventral positions often produce the same motoneuron subtype: ventral neuroblasts typically generate motoneurons with dorsal muscle targets, while dorsal neuroblasts produce motoneurons with ventral muscle targets. Lineage data and movies can be found at http://www.biologists. com/Development/movies/dev8623.html http://www.neuro.uoregon. edu/doelab/lineages/


Asunto(s)
Drosophila/embriología , Músculos/citología , Músculos/embriología , Neuronas/citología , Neuronas/fisiología , Animales , Axones , Linaje de la Célula , Tamaño de la Célula , Células Clonales , Drosophila/genética , Embrión no Mamífero/inervación , Inducción Embrionaria , Insectos/embriología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Músculos/inervación , Neuroglía/citología , Neuroglía/fisiología
18.
Am J Physiol ; 276(6): H2069-75, 1999 06.
Artículo en Inglés | MEDLINE | ID: mdl-10362689

RESUMEN

Recent evidence from our laboratory and others suggests that nitric oxide (NO) is a modulator of in vivo and in vitro oxygen consumption in the murine and canine heart. Therefore, the goal of our study was twofold: to determine whether NO modulates myocardial oxygen consumption in the nonhuman primate heart in vitro and to evaluate whether the seemingly cardioprotective actions of amlodipine may involve an NO-mediated mechanism. Using a Clark-type O2 electrode, we measured oxygen consumption in cynomologous monkey heart at baseline and after increasing doses of S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-4) M), bradykinin (10(-7)-10(-4) M), ramiprilat (10(-7)-10(-4) M), and amlodipine (10(-7)-10(-5) M). SNAP (-38 +/- 5.8%), bradykinin (-19 +/- 3.9%), ramiprilat (-28 +/- 2.3%), and amlodipine (-23 +/- 4.5%) each caused significant (P < 0.05) reductions in myocardial oxygen consumption at their highest dose. Preincubation of tissue with nitro-L-arginine methyl ester (10(-4) M) blunted the effects of bradykinin (-5.4 +/- 3.2%), ramiprilat (-4.8 +/- 5.0%), and amlodipine (-5.3 +/- 5.0%) but had no effect on the tissue response to SNAP (-38 +/- 5.8%). Our results indicate that NO can reduce oxygen consumption in the primate myocardium in vitro, and they support a role for the calcium-channel blocker amlodipine as a modulator of myocardial oxygen consumption via a kinin-NO mediated mechanism.


Asunto(s)
Amlodipino/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Miocardio/metabolismo , Óxido Nítrico/fisiología , Consumo de Oxígeno/fisiología , Amlodipino/antagonistas & inhibidores , Animales , Bradiquinina/antagonistas & inhibidores , Bradiquinina/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Hemodinámica/fisiología , Técnicas In Vitro , Macaca fascicularis , Masculino , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Consumo de Oxígeno/efectos de los fármacos , Penicilamina/análogos & derivados , Penicilamina/farmacología , Ramipril/análogos & derivados , Ramipril/antagonistas & inhibidores , Ramipril/farmacología , S-Nitroso-N-Acetilpenicilamina
19.
Development ; 126(10): 2063-71, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10207132

RESUMEN

The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to 'double bristle' sense organs (reflecting a IIb-to-IIa transformation) or 'single bristle' sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.


Asunto(s)
Proteínas de Drosophila , Drosophila/citología , Proteínas de Homeodominio/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Nucleares/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Diferenciación Celular , Linaje de la Célula , Femenino , Masculino , Neuronas/citología , Ratas , Órganos de los Sentidos/citología , Células Madre
20.
Genes Dev ; 12(22): 3591-602, 1998 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-9832510

RESUMEN

One of the first steps in neurogenesis is the diversification of cells along the dorsoventral axis. In Drosophila the central nervous system develops from three longitudinal columns of cells: ventral cells that express the vnd/nk2 homeobox gene, intermediate cells, and dorsal cells that express the msh homeobox gene. Here we describe a new Drosophila homeobox gene, intermediate neuroblasts defective (ind), which is expressed specifically in the intermediate column cells. ind is essential for intermediate column development: Null mutants have a transformation of intermediate to dorsal column neuroectoderm fate, and only 10% of the intermediate column neuroblasts develop. The establishment of dorsoventral column identity involves negative regulation: Vnd represses ind in the ventral column, whereas ind represses msh in the intermediate column. Vertebrate genes closely related to vnd (Nkx2.1 and Nkx2.2), ind (Gsh1 and Gsh2), and msh (Msx1 and Msx3) are expressed in corresponding ventral, intermediate, and dorsal domains during vertebrate neurogenesis, raising the possibility that dorsoventral patterning within the central nervous system is evolutionarily conserved.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Drosophila , Drosophila/genética , Genes Homeobox/genética , Neuronas/citología , Proteínas Represoras , Transactivadores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Huella de ADN , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Genes de Insecto/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA