Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(27): 35541-35553, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920286

RESUMEN

Utilizing the self-assembly of block copolymers with large Flory-Huggins interaction parameters (χ) for nanofabrication is a formidable challenge due to the attendant large surface energy differences between the blocks. This work reports a robust protocol for the fabrication of thin films with highly ordered cylindrical nanopore arrays via the self-assembly of an asymmetric poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) diblock copolymer blended with a P4VP homopolymer. The desired vertical domain orientation is achieved at the air-polymer interface by controlled solvent vapor annealing (SVA) using acetone, a solvent with weak selectivity for PS over P4VP, and at the substrate interface by functionalization using a hydroxy-terminated poly(2-vinylpyridine) (P2VP-OH) homopolymer brush. In contrast, the vertical cylinder orientation is unstable during acetone SVA on substrates functionalized using hydroxy-terminated poly(methyl methacrylate) (PMMA-OH). Although PMMA exhibits more balanced interfacial energies between PS and P4VP than P2VP in the dry state, it is also swollen more selectively by acetone. We hypothesize that the nearly balanced solvent swelling of the three polymers (P2VP, P4VP, and PS) stabilizes the vertical cylinder orientation, while unbalanced swelling (PMMA > P4VP and PS) does not. We further characterize pore formation by addition of a P4VP homopolymer and its postassembly extraction using ethanol, revealing a narrow window of pore size tunability. Notably, minimal differences in nanopore morphologies are observed for P4VP volume fractions as high as 0.1, regardless of the P4VP molar mass. However, further increasing the P4VP volume fraction results in domain reorientation or macrophase separation when its molar mass is less than or greater than the P4VP block molar mass, respectively. Using a P4VP homopolymer that is nearly equal in length to the P4VP block enables the fabrication of well-ordered arrays of vertical, through-film nanopores with high aspect ratios (>10), small periods (<23 nm), and diameters less than 10 nm.

2.
Nano Lett ; 23(10): 4290-4297, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141413

RESUMEN

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface. Results show that the patterned nanoribbons retain their ß-sheet structure and function and direct the formation of filamentous and plate-shaped calcium phosphate with high fidelity, where the phase, amorphous or crystalline, depends on the choice of mineral precursor and the fidelity depends on peptide sequence. The common ability of supramolecular systems to assemble on surfaces with appropriate chemistry combined with the tendency of many templates to mineralize multiple inorganic materials implies this approach defines a general platform for bottom-up-patterning of hybrid organic-inorganic materials.


Asunto(s)
Biomimética , Nanotubos de Carbono , Polímeros/química , Minerales , Fosfatos de Calcio/química , Péptidos/química
3.
Soft Matter ; 19(14): 2594-2604, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947412

RESUMEN

Blends of block copolymers can form phases and exhibit features distinct from the constituent materials. We study thin film blends of cylinder-forming and lamellar-forming block copolymers across a range of substrate surface energies. Blend materials are responsive to interfacial energy, allowing selection of pure or coexisting phases based on surface chemistry. Blending stabilizes certain motifs that are typically metastable, and can be used to generate pure hexagonally perforated lamellar thin films across a range of film thicknesses and surface energies. This tolerant behavior is ascribed to the ability of blend materials to redistribute chains to stabilize otherwise high-energy defect structures. The blend responsiveness allows the morphology to be spatially defined through multi-tone chemical surface patterns.

4.
Nanoscale ; 15(5): 2188-2196, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633155

RESUMEN

Directed placement of DNA origami could play a key role in future integrated nanoelectronic devices. Here we demonstrated the site-selective attachment of DNA origami on gold dots formed using a pattern transfer method through block copolymer self-assembly. First, a random copolymer brush layer is grafted on the Si surface and then poly (styrene-b-methylmethacrylate) block copolymer is spin-coated to give a hexagonal nanoarray after annealing. UV irradiation followed by acetic acid etching is used to remove the PMMA, creating cylindrical holes and then oxygen plasma etching removes the random copolymer layer inside those holes. Next, metal evaporation, followed by lift-off creates a gold dot array. We evaluated different ligand functionalization of Au dots, as well as DNA hybridization to attach DNA origami to the nanodots. DNA-coated Au nanorods are assembled on the DNA origami as a step towards creating nanowires and to facilitate electron microscopy characterization of the attachment of DNA origami on these Au nanodots. The DNA hybridization approach showed better DNA attachment to Au nanodots than localization by electrostatic interaction. This work contributes to the understanding of DNA-templated assembly, nanomaterials, and block copolymer nanolithography. Furthermore, the work shows potential for creating DNA-templated nanodevices and their placement in ordered arrays in future nanoelectronics.


Asunto(s)
Nanoestructuras , Nanotubos , Nanocables , Oro , ADN , Polímeros
5.
Sci Adv ; 9(2): eadd3687, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638174

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful approach to fabricate complex nanostructure arrays, but finding morphologies that emerge with changes in polymer architecture, composition, or assembly constraints remains daunting because of the increased dimensionality of the DSA design space. Here, we demonstrate machine-guided discovery of emergent morphologies from a cylinder/lamellae BCP blend directed by a chemical grating template, conducted without direct human intervention on a synchrotron x-ray scattering beamline. This approach maps the morphology-template phase space in a fraction of the time required by manual characterization and highlights regions deserving more detailed investigation. These studies reveal localized, template-directed partitioning of coexisting lamella- and cylinder-like subdomains at the template period length scale, manifesting as previously unknown morphologies such as aligned alternating subdomains, bilayers, or a "ladder" morphology. This work underscores the pivotal role that autonomous characterization can play in advancing the paradigm of DSA.

6.
Nat Commun ; 13(1): 6947, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376380

RESUMEN

Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly's responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.


Asunto(s)
Polímeros , Polímeros/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-35656598

RESUMEN

Nanopatterning for the fabrication of optical metasurfaces entails a need for high-resolution approaches like electron beam lithography that cannot be readily scaled beyond prototyping demonstrations. Block copolymer thin film self-assembly offers an attractive alternative for producing periodic nanopatterns across large areas, yet the pattern feature sizes are fixed by the polymer molecular weight and composition. Here, a general strategy is reported which overcomes the limitation of the fixed feature size by treating the copolymer thin film as a hierarchical resist, in which the nanoscale pattern motif is defined by self-assembly. Feature sizes can then be tuned by thermal reflow controlled locally by irradiative cross-linking or chemical alteration using lithographic ultraviolet light or electron beam exposure. Using blends of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) with PS and PMMA homopolymers, we demonstrate both self-assembled PS grating and hexagonal hole patterns; exposure-controlled reflow is then used to reduce the hole diameter by as much as 50% or increase the PS grating linewidth by more than 180%. Transferring these nanopatterns, or their inverse obtained by a lift-off approach, into silicon yields structural colors that may be prescriptively controlled based on the nanoscale feature size. Furthermore, patterned exposure enables area-selective feature size control, yielding uniform structural color patterns across centimeter square areas. Electron beam lithography is also used to show that the lithographic resolution of this selective-area control can be extended to the nanoscale dimensions of the self-assembled features. The exposure-controlled reflow approach demonstrated here takes a pivotal step toward fabricating complex, hierarchical optical metasurfaces using scalable self-assembly methods.

8.
Nanotechnology ; 33(45)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35760037

RESUMEN

The synthesis of nanostructured surfaces via block copolymer (BCP) self-assembly enables a precise control of the surface feature shape within a range of dimensions of the order of tens of nanometers. This work studies how to exploit this ability to control the wetting hysteresis and liquid adhesion forces as the substrate undergoes chemical aging and changes in its intrinsic wettability. Via BCP self-assembly we fabricate nanostructured surfaces on silicon substrates with a hexagonal array of regular conical pillars having a fixed period (52 nm) and two different heights (60 and 200 nm), which results in substantially different lateral and top surface areas of the nanostructure. The wetting hysteresis of the fabricated surfaces is characterized using force-displacement measurements under quasistaic conditions and over sufficiently long periods of time for which the substrate chemistry and surface energy, characterized by the Young contact angle, varies significantly. The experimental results and theoretical analysis indicate that controlling the lateral and top area of the nanostructure not only controls the degree of wetting hysteresis but can also make the advancing and receding contact angles less susceptible to chemical aging. These results can help rationalize the design of nanostructured surfaces for different applications such as self-cleaning, enhanced heat transfer, and drag reduction in micro/nanofluidic devices.

9.
Nanotechnology ; 33(29)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35358955

RESUMEN

The nanophotonic engineering of light-matter interactions has profoundly changed research behind the design and fabrication of optical materials and devices. Metasurfaces-arrays of subwavelength nanostructures that interact resonantly with electromagnetic radiation-have emerged as an integral nanophotonic platform for a new generation of ultrathin lenses, displays, polarizers and other devices. Their success hinges on advances in lithography and nanofabrication in recent decades. While existing nanolithography techniques are suitable for basic research and prototyping, issues of cost, throughput, scalability, and substrate compatibility may preclude their use for many metasurface applications. Patterning via spontaneous self-assembly of block copolymer thin films offers an enticing alternative for nanophotonic manufacturing that is rapid, inexpensive, and applicable to large areas and diverse substrates. This review discusses the advantages and disadvantages of block copolymer-based nanopatterning and highlights recent progress in their use for broadband antireflection, surface enhanced Raman spectroscopy, and other nanophotonic applications. Recent advances in diversification of self-assembled block copolymer nanopatterns and improved processes for enhanced scalability of self-assembled nanopatterning using block copolymers are also discussed, with a spotlight on directions for future research that would enable a wider array of nanophotonic applications.

10.
ACS Appl Mater Interfaces ; 13(50): 60092-60098, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878239

RESUMEN

Aqueous zinc batteries are of great interest as a rechargeable energy storage system, particularly owing to the low cost and high safety of aqueous electrolytes, as well as the high capacity of zinc anodes. Unfortunately, the wide commercialization of aqueous zinc batteries is impeded by the irreversible water reduction and irregular zinc evolution issues on the anode side. Hereby, a hydrophobic and ultrathin polystyrene molecule brush layer is tethered onto the surface of zinc metal anodes to tackle the above limitations. Experimental investigations reveal that the waterproof artificial layer can sustain fast interfacial ionic transportation, minimize hydrogen evolution, and smoothen Zn deposition, thus conferring enhanced electrochemical performance to the as-protected Zn anode in both symmetric Zn//Zn cells and Zn//LiV3O8 full cells.

11.
ACS Appl Mater Interfaces ; 12(45): 51044-51056, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33138355

RESUMEN

3D printing of amorphous and crystalline ceramics is of paramount importance for the fabrication of a wide range of devices with applications across different technology fields. Printed ceramics are remarkably enabled by the sol-gel synthesis method in conjunction with continuous filament direct ink writing. During printing, multiple processes contribute to the evolution of inks including shape retention, chemical conversion, solidification, and microstructure formation. Traditionally, depending on the ink composition and printing environment, several mechanisms have been associated with the shape retention and solidification of 3D printed structures: gelation, rapid solvent evaporation, energy-driven phase transformation, and chemical-driven phase transformation. Understanding the fundamental differences between these mechanisms becomes key since they strongly influence the spatiotemporal evolution of the materials, as the out-of-equilibrium processes inherent to the extrusion, relaxation, and solidification of printed materials have significant effects on the materials properties. In this work, we investigate the shape retention mechanism and the hydrolysis-induced material conversion and microstructure formation during the 3D printing of a water reactive sol-gel ink that transforms into titanium dioxide-based ceramic. This study aims at identifying characteristic mechanisms associated with the material transformation, establishing connections between the microstructure development and the timescales associated with solidification under operando 3D-printing conditions. The investigation of this material's out-of-equilibrium pathways under processing conditions is enabled by time-resolved coherent X-ray scattering, providing simultaneous access to temporospatially resolved microstructural and dynamics information. Furthermore, we explore X-ray speckle tracking as a tool to resolve deformations of the microstructure in a printed filament associated with the deposition of consecutive filaments. Through this work, we aim at providing a fundamental understanding of the relationships behind these transformative processes in 3D printing and their timescales as the basis for achieving unprecedented control over printed materials microstructure.

12.
Sci Rep ; 10(1): 17663, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077759

RESUMEN

A majority of experimental disciplines face the challenge of exploring large and high-dimensional parameter spaces in search of new scientific discoveries. Materials science is no exception; the wide variety of synthesis, processing, and environmental conditions that influence material properties gives rise to particularly vast parameter spaces. Recent advances have led to an increase in the efficiency of materials discovery by increasingly automating the exploration processes. Methods for autonomous experimentation have become more sophisticated recently, allowing for multi-dimensional parameter spaces to be explored efficiently and with minimal human intervention, thereby liberating the scientists to focus on interpretations and big-picture decisions. Gaussian process regression (GPR) techniques have emerged as the method of choice for steering many classes of experiments. We have recently demonstrated the positive impact of GPR-driven decision-making algorithms on autonomously-steered experiments at a synchrotron beamline. However, due to the complexity of the experiments, GPR often cannot be used in its most basic form, but rather has to be tuned to account for the special requirements of the experiments. Two requirements seem to be of particular importance, namely inhomogeneous measurement noise (input-dependent or non-i.i.d.) and anisotropic kernel functions, which are the two concepts that we tackle in this paper. Our synthetic and experimental tests demonstrate the importance of both concepts for experiments in materials science and the benefits that result from including them in the autonomous decision-making process.

13.
Biomacromolecules ; 21(9): 3608-3619, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32786534

RESUMEN

A protein-engineered triblock copolymer hydrogel composed of two self-assembling domains (SADs) has been fabricated by a photoactivatable diazirine group followed by ultraviolet (UV)-mediated crosslinking. The photocrosslinkable protein polymer CEC-D has been patterned into various features including different micrometer-scale stripes by using lithographic techniques. The patterned hydrogels are important for encapsulation of small molecules where a photopatterned fraction of 50% is optimal for maximum absorption. Stripe-patterned CEC-D100-100 exhibits slightly lower swelling ratios, an 8.9 times lower erosion profile, and a 2.6-fold higher drug release compared to the unpatterned hydrogel control, CEC-D0. Our studies demonstrate the potential of photocrosslinkable protein polymer hydrogels to be used as scaffolds for therapeutic delivery of small molecules. Through photolithographic techniques on the protein hydrogel, a variety of functionalities can be achieved by patterning different features enabling the mimicry of biological systems.


Asunto(s)
Hidrogeles , Polímeros , Liberación de Fármacos
14.
Rev Sci Instrum ; 91(1): 013701, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012628

RESUMEN

Electrospray deposition (ESD) enables the growth of solution deposited thin films in a precise and continuous manner by the delivery of submicron droplets of dilute solutions to a heated substrate. By combining ESD with programmable motor control and gradient solution pumping in a first-of-its-kind user tool at the Center for Functional Nanomaterials at Brookhaven National Laboratory, we show the ability to create one or two dimensional compositional gradient nanoscale films via ESD. These capabilities make it possible to construct thin film multicomponent "libraries" on a single substrate to rapidly and systematically characterize composition-dependent properties in a variety of material systems such as thin films involving homopolymer and block copolymer blends. We report the design, construction, and validation of a gradient ESD tool that allows users to carefully control the jet stability, flow composition, spray position, and substrate temperature. Calibrated thin films range in thickness from tens to hundreds of nanometers. We demonstrate gradient thin films using a ternary dye triangle as well as a gradual blending of polystyrene homopolymer with poly(styrene-block-methyl methacrylate) on a single substrate. Paired with the rapid measurement capabilities of synchrotron small angle X-ray scattering, this tool forms an integral part of a new platform for high-throughput, autonomous characterization and design of nanomaterial thin films and soft materials more generally.

15.
Sci Rep ; 10(1): 1325, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992725

RESUMEN

Autonomous experimentation is an emerging paradigm for scientific discovery, wherein measurement instruments are augmented with decision-making algorithms, allowing them to autonomously explore parameter spaces of interest. We have recently demonstrated a generalized approach to autonomous experimental control, based on generating a surrogate model to interpolate experimental data, and a corresponding uncertainty model, which are computed using a Gaussian process regression known as ordinary Kriging (OK). We demonstrated the successful application of this method to exploring materials science problems using x-ray scattering measurements at a synchrotron beamline. Here, we report several improvements to this methodology that overcome limitations of traditional Kriging methods. The variogram underlying OK is global and thus insensitive to local data variation. We augment the Kriging variance with model-based measures, for instance providing local sensitivity by including the gradient of the surrogate model. As with most statistical regression methods, OK minimizes the number of measurements required to achieve a particular model quality. However, in practice this may not be the most stringent experimental constraint; e.g. the goal may instead be to minimize experiment duration or material usage. We define an adaptive cost function, allowing the autonomous method to balance information gain against measured experimental cost. We provide synthetic and experimental demonstrations, validating that this improved algorithm yields more efficient autonomous data collection.

16.
ACS Appl Mater Interfaces ; 12(1): 1444-1453, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31786911

RESUMEN

Organic-inorganic hybrids featuring tunable material properties can be readily generated by applying vapor- or liquid-phase infiltration (VPI or LPI) of inorganic materials into organic templates, with resulting properties controlled by type and quantity of infiltrated inorganics. While LPI offers more diverse choices of infiltratable elements, it tends to yield smaller infiltration amount than VPI, but the attempt to address the issue has been rarely reported. Here, we demonstrate a facile temperature-enhanced LPI method to control and drastically increase the quantity and kinetics of Pt infiltration into self-assembled polystyrene-block-poly(2-vinylpyridine) block copolymer (BCP) thin films. By applying LPI at mildly elevated temperatures (40-80 °C), we showcase controllable optical functionality of hybrid BCP films along with conductive three-dimensional (3D) inorganic nanostructures. Structural analysis reveals enhanced metal loading into the BCP matrix at higher LPI temperatures, suggesting multiple metal ion infiltration per monomer of P2VP. Combining temperature-enhanced LPI with hierarchical multilayer BCP self-assembly, we generate BCP-metal hybrid optical coatings featuring tunable antireflective properties as well as scalable conductive 3D Pt nanomesh structures. Enhanced material infiltration and control by temperature-enhanced LPI not only enables tunability of organic-inorganic hybrid nanostructures and properties but also expands the application of BCPs for generating uniquely functional inorganic nanostructures.

17.
RSC Adv ; 10(69): 42529-42541, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516747

RESUMEN

Multicomponent blending is a convenient yet powerful approach to rationally control the material structure, morphology, and functional properties in solution-deposited films of block copolymers and other self-assembling nanomaterials. However, progress in understanding the structural and morphological dependencies on blend composition is hampered by the time and labor required to synthesize and characterize a large number of discrete samples. Here, we report a new method to systematically explore a wide composition space in ternary blends. Specifically, the blend composition space is divided into gradient segments deposited sequentially on a single wafer by a new gradient electrospray deposition tool, and characterized using high-throughput grazing-incidence small-angle X-ray scattering. This method is applied to the creation of a ternary morphology diagram for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer blended with PS and PMMA homopolymers. Using "wet brush" homopolymers of very low molecular weight (∼1 kg mol-1), we identify well-demarcated composition regions comprising highly ordered cylinder, lamellae, and sphere morphologies, as well as a disordered phase at high homopolymer mass fractions. The exquisite granularity afforded by this approach also helps to uncover systematic dependencies among self-assembled morphology, topological grain size, and domain period as functions of homopolymer mass fraction and PS : PMMA ratio. These results highlight the significant advantages afforded by blending low molecular weight homopolymers for block copolymer self-assembly. Meanwhile, the high-throughput, combinatorial approach to investigating nanomaterial blends introduced here dramatically reduces the time required to explore complex process parameter spaces and is a natural complement to recent advances in autonomous X-ray characterization.

18.
Sci Rep ; 9(1): 11809, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413339

RESUMEN

Modern scientific instruments are acquiring data at ever-increasing rates, leading to an exponential increase in the size of data sets. Taking full advantage of these acquisition rates will require corresponding advancements in the speed and efficiency of data analytics and experimental control. A significant step forward would come from automatic decision-making methods that enable scientific instruments to autonomously explore scientific problems-that is, to intelligently explore parameter spaces without human intervention, selecting high-value measurements to perform based on the continually growing experimental data set. Here, we develop such an autonomous decision-making algorithm that is physics-agnostic, generalizable, and operates in an abstract multi-dimensional parameter space. Our approach relies on constructing a surrogate model that fits and interpolates the available experimental data, and is continuously refined as more data is gathered. The distribution and correlation of the data is used to generate a corresponding uncertainty across the surrogate model. By suggesting follow-up measurements in regions of greatest uncertainty, the algorithm maximally increases knowledge with each added measurement. This procedure is applied repeatedly, with the algorithm iteratively reducing model error and thus efficiently sampling the parameter space with each new measurement that it requests. We validate the method using synthetic data, demonstrating that it converges to faithful replica of test functions more rapidly than competing methods, and demonstrate the viability of the approach in an experimental context by using it to direct autonomous small-angle (SAXS) and grazing-incidence small-angle (GISAXS) x-ray scattering experiments.

19.
Sci Rep ; 9(1): 6914, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061512

RESUMEN

Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0 ± 5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.

20.
Nanoscale ; 11(19): 9533-9546, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31049522

RESUMEN

Three-dimensional (3D) nanoarchitectures can offer enhanced material properties, such as large surface areas that amplify the structures' interaction with environments making them useful for various sensing applications. Self-assembled block copolymers (BCPs) can readily generate various 3D nanomorphologies, but their conversion to useful inorganic materials remains one of the critical challenges against the practical application of self-assembled BCPs. This work reports the vapor-phase infiltration synthesis of optoelectrically active, 3D ZnO nanomesh architectures by combining hierarchical successive stacking of self-assembled, lamellar-phase polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) BCP thin films and a modified block-selective vapor-phase material infiltration protocol. The 3D ZnO nanomesh exhibits optoelectrical functionality, featuring stack-layer-number-dependent electrical conductance resembling the percolative transport originating from the intrinsic morphological network connectivity of the lamellar BCP pattern with symmetric block ratio. The results not only illustrate the first demonstration of electrical functionality based on the ZnO nanoarchitecture directly generated by the infiltration synthesis in self-assembled BCP thin films but also present a new, large-area scalable, metal oxide thin film nanoarchitecture fabrication method utilizing industry-compatible polymer solution coating and atomic layer deposition. Given the large surface area, three-dimensional porosity, and readily scalable fabrication procedures, the generated ZnO nanomesh promises potential applications as an efficient active medium in chemical and optical sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA