Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38768007

RESUMEN

Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.


Asunto(s)
Encéfalo , Electroencefalografía , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Adulto Joven , Adulto , Niño , Anciano , Adolescente , Lactante , Preescolar , Persona de Mediana Edad , Anciano de 80 o más Años , Masculino , Femenino , Encéfalo/fisiología , Algoritmos , Aprendizaje Profundo , Análisis Multivariante , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador
2.
Sci Rep ; 13(1): 18021, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865721

RESUMEN

Normobaric hypoxia (NH) and hypobaric hypoxia (HH) are both used to train aircraft pilots to recognize symptoms of hypoxia. NH (low oxygen concentration) training is often preferred because it is more cost effective, simpler, and safer than HH. It is unclear, however, whether NH is neurophysiologically equivalent to HH (high altitude). Previous studies have shown that neural oscillations, particularly those in the alpha band (8-12 Hz), are impacted by hypoxia. Attention tasks have been shown to reliably modulate alpha oscillations, although the neurophysiological impacts of hypoxia during cognitive processing remains poorly understood. To address this we investigated induced and evoked power alongside physiological data while participants performed an attention task during control (normobaric normoxia or NN), NH (fraction of inspired oxygen = 12.8%, partial pressure of inspired oxygen = 87.2 mmHg), and HH (3962 m, partial pressure of inspired oxygen = 87.2 mmHg) conditions inside a hypobaric chamber. No significant differences between NH and HH were found in oxygen saturation, end tidal gases, breathing rate, middle cerebral artery velocity and blood pressure. Induced alpha power was significantly decreased in NH and HH when compared to NN. Participants in the HH condition showed significantly increased induced lower-beta power and evoked higher-beta power, compared with the NH and NN conditions, indicating that NH and HH differ in their impact on neurophysiological activity supporting cognition. NH and HH were found not to be neurophysiologically equivalent as electroencephalography was able to differentiate NH from HH.


Asunto(s)
Hipoxia , Oxígeno , Humanos , Frecuencia Respiratoria , Arteria Cerebral Media , Presión Sanguínea , Altitud
3.
Brain Sci ; 13(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37891816

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by both atypical functional brain connectivity and cognitive challenges across multiple cognitive domains. The relationship between task-dependent brain connectivity and cognitive abilities, however, remains poorly understood. In this study, children with ASD and their typically developing (TD) peers engaged in semantic and pragmatic language tasks while their task-dependent brain connectivity was mapped and compared. A multivariate statistical approach revealed associations between connectivity and psychometric assessments of relevant cognitive abilities. While both groups exhibited brain-behavior correlations, the nature of these associations diverged, particularly in the directionality of overall correlations across various psychometric categories. Specifically, greater disparities in functional connectivity between the groups were linked to larger differences in Autism Questionnaire, BRIEF, MSCS, and SRS-2 scores but smaller differences in WASI, pragmatic language, and Theory of Mind scores. Our findings suggest that children with ASD utilize distinct neural communication patterns for language processing. Although networks recruited by children with ASD may appear less efficient than those typically engaged, they could serve as compensatory mechanisms for potential disruptions in conventional brain networks.

4.
PLoS One ; 18(8): e0289299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556483

RESUMEN

In the last 50 years, the study of brain development has brought major discoveries to education and medicine, changing the lives of millions of children and families. However, collecting behavioral and neurophysiological data from children has specific challenges, such as high rates of data loss and participant dropout. We have developed a science camp method to collect data from children using the benefits of positive peer interactions and interactive and engaging activities, to allow researchers to better collect data repeatedly and reliably from groups of children. A key advantage of this approach is that by increasing participant engagement, attention is also increased, thereby increasing data quality, reducing data loss, and lowering attrition rates. This protocol describes the step-by-step procedure for facilitation of a science camp, including behavioral, electrophysiological, and participatory engagement activities. As this method is robust but also flexible, we anticipate that it can also be applied to different demographics and research needs.


Asunto(s)
Recolección de Datos , Grupo Paritario , Ciencia , Niño , Humanos , Recolección de Datos/métodos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37018726

RESUMEN

Routine clinical EEG is a standard test used for the neurological evaluation of patients. A trained specialist interprets EEG recordings and classifies them into clinical categories. Given time demands and high inter-reader variability, there is an opportunity to facilitate the evaluation process by providing decision support tools that can classify EEG recordings automatically. Classifying clinical EEG is associated with several challenges: classification models are expected to be interpretable; EEGs vary in duration and EEGs are recorded by multiple technicians operating various devices. Our study aimed to test and validate a framework for EEG classification which satisfies these requirements by transforming EEG into unstructured text. We considered a highly heterogeneous and extensive sample of routine clinical EEGs (n = 5785), with a wide range of participants aged between 15 and 99 years. EEG scans were recorded at a public hospital, according to 10/20 electrode positioning with 20 electrodes. The proposed framework was based on symbolizing EEG signals and adapting a previously proposed method from natural language processing (NLP) to break symbols into words. Specifically, we symbolized the multichannel EEG time series and applied a byte-pair encoding (BPE) algorithm to extract a dictionary of the most frequent patterns (tokens) reflecting the variability of EEG waveforms. To demonstrate the performance of our framework, we used newly-reconstructed EEG features to predict patients' biological age with a Random Forest regression model. This age prediction model achieved a mean absolute error of 15.7 years. We also correlated tokens' occurrence frequencies with age. The highest correlations between the frequencies of tokens and age were observed at frontal and occipital EEG channels. Our findings demonstrated the feasibility of applying an NLP-based approach to classifying routine clinical EEG. Notably, the proposed algorithm could be instrumental in classifying clinical EEG with minimal preprocessing and identifying clinically-relevant short events, such as epileptic spikes.

6.
Hum Brain Mapp ; 44(6): 2345-2364, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715216

RESUMEN

High-altitude indoctrination (HAI) trains individuals to recognize symptoms of hypoxia by simulating high-altitude conditions using normobaric (NH) or hypobaric (HH) hypoxia. Previous studies suggest that despite equivalent inspired oxygen levels, physiological differences could exist between these conditions. In particular, differences in neurophysiological responses to these conditions are not clear. Our study aimed to investigate correlations between oxygen saturation (SpO2 ) and neural responses in NH and HH. We recorded 5-min of resting-state eyes-open electroencephalogram (EEG) and SpO2 during control, NH, and HH conditions from 13 participants. We applied a multivariate framework to characterize correlations between SpO2 and EEG measures (spectral power and multiscale entropy [MSE]), within each participant and at the group level. Participants were desaturating during the first 150 s of NH versus steadily desaturated in HH. We considered the entire time interval, first and second half intervals, separately. All the conditions were characterized by statistically significant participant-specific patterns of EEG-SpO2 correlations. However, at the group level, the desaturation period expressed a robust pattern of these correlations across frequencies and brain locations. Specifically, the first 150 s of NH during desaturation differed significantly from the other conditions with negative absolute alpha power-SpO2 correlations and positive MSE-SpO2 correlations. Once steadily desaturated, NH and HH had no significant differences in EEG-SpO2 correlations. Our findings indicate that the desaturating phase of hypoxia is a critical period in HAI courses, which would require developing strategies for mitigating the hypoxic stimulus in a real-world situation.


Asunto(s)
Hipoxia , Saturación de Oxígeno , Humanos , Oxígeno , Electroencefalografía
7.
Sci Rep ; 12(1): 8948, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624226

RESUMEN

Children with autism spectrum disorder (ASD) experience difficulties with social communication, making it challenging to interpret contextual information that aids in accurately interpreting language. To investigate how the brain processes the contextual information and how this is different in ASD, we compared event-related potentials (ERPs) in response to processing visual and auditory congruent and incongruent information. Two groups of children participated in the study: 37 typically developing children and 15 children with ASD (age range = 6 to 12). We applied a language task involving auditory sentences describing congruent or incongruent images. We investigated two ERP components associated with language processing: the N400 and P600. Our results showed how children with ASD present significant differences in their neural responses in comparison with the TD group, even when their reaction times and correct trials are not significantly different from the TD group.


Asunto(s)
Trastorno del Espectro Autista , Electroencefalografía , Trastorno del Espectro Autista/complicaciones , Encéfalo , Niño , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Tiempo de Reacción/fisiología
8.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35443990

RESUMEN

The neural underpinnings of humans' ability to process faces and how it changes over typical development have been extensively studied using paradigms where face stimuli are oversimplified, isolated, and decontextualized. The prevalence of this approach, however, has resulted in limited knowledge of face processing in ecologically valid situations, in which faces are accompanied by contextual information at multiple time scales. In the present study, we use a naturalistic movie paradigm to investigate how neuromagnetic activation and phase synchronization elicited by faces from movie scenes in humans differ between children and adults. We used MEG data from 22 adults (6 females, 3 left handed; mean age, 27.7 ± 5.28 years) and 20 children (7 females, 1 left handed; mean age, 9.5 ± 1.52 years) collected during movie viewing. We investigated neuromagnetic time-locked activation and phase synchronization elicited by movie scenes containing faces in contrast to other movie scenes. Statistical differences between groups were tested using a multivariate data-driven approach. Our results revealed lower face-elicited activation and theta/alpha phase synchrony between 120 and 330 ms in children compared with adults. Reduced connectivity in children was observed between the primary visual areas as well as their connections with higher-order frontal and parietal cortical areas. This is the first study to map neuromagnetic developmental changes in face processing in a time-locked manner using a naturalistic movie paradigm. It supports and extends the existing evidence of core face-processing network maturation accompanied by the development of an extended system of higher-order cortical areas engaged in face processing.


Asunto(s)
Mapeo Encefálico , Películas Cinematográficas , Adulto , Mapeo Encefálico/métodos , Niño , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Adulto Joven
9.
Hear Res ; 409: 108308, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343851

RESUMEN

Unilateral cochlear implantation (CI) limits deafness-related changes in the auditory pathways but promotes abnormal cortical preference for the stimulated ear and leaves the opposite ear with little protection from auditory deprivation. In the present study, time-frequency analyses of event-related potentials elicited from stimuli presented to each ear were used to determine effects of unilateral CI use on cortical synchrony. CI-elicited activity in 34 adolescents (15.4±1.9 years of age) who had listened with unilateral CIs for most of their lives prior to bilateral implantation were compared to responses elicited by a 500Hz tone-burst in normal hearing peers. Phase-locking values between 4 and 60Hz were calculated for 171 pairs of 19-cephalic recording electrodes. Ear specific results were found in the normal hearing group: higher synchronization in low frequency bands (theta and alpha) from left ear stimulation in the right hemisphere and more high frequency activity (gamma band) from right ear stimulation in the left hemisphere. In the CI group, increased phase synchronization in the theta and beta frequencies with bursts of gamma activity were elicited by the experienced-right CI between frontal, temporal and parietal cortical regions in both hemispheres, consistent with increased recruitment of cortical areas involved in attention and higher-order processes, potentially to support unilateral listening. By contrast, activity was globally desynchronized in response to initial stimulation of the naïve-left ear, suggesting decoupling of these pathways from the cortical hearing network. These data reveal asymmetric auditory development promoted by unilateral CI use, resulting in an abnormally mature neural network.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Estimulación Acústica , Adolescente , Corteza Auditiva , Sordera , Humanos , Percepción del Habla
10.
Clin Neurophysiol ; 132(7): 1505-1514, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34023630

RESUMEN

OBJECTIVE: We aimed to test the hypothesis that computational features of the first several minutes of EEG recording can be used to estimate the risk for development of acute seizures in comatose critically-ill children. METHODS: In a prospective cohort of 118 comatose children, we computed features of the first five minutes of artifact-free EEG recording (spectral power, inter-regional synchronization and cross-frequency coupling) and tested if these features could help identify the 25 children who went on to develop acute symptomatic seizures during the subsequent 48 hours of cEEG monitoring. RESULTS: Children who developed acute seizures demonstrated higher average spectral power, particularly in the theta frequency range, and distinct patterns of inter-regional connectivity, characterized by greater connectivity at delta and theta frequencies, but weaker connectivity at beta and low gamma frequencies. Subgroup analyses among the 97 children with the same baseline EEG background pattern (generalized slowing) yielded qualitatively and quantitatively similar results. CONCLUSIONS: These computational features could be applied to baseline EEG recordings to identify critically-ill children at high risk for acute symptomatic seizures. SIGNIFICANCE: If confirmed in independent prospective cohorts, these features would merit incorporation into a decision support system in order to optimize diagnostic and therapeutic management of seizures among comatose children.


Asunto(s)
Coma/diagnóstico , Coma/fisiopatología , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos
11.
Biol Psychol ; 161: 108076, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33716108

RESUMEN

Mental fatigue is commonplace but there is limited understanding of the neural underpinnings of its development, the time course of its recovery, and its impact on motor function. Hence, this study used neural (electroencephalography) and motor measures to investigate the development and recovery of mental fatigue. Twenty participants performed a 60-min N-back task, with neural activity compared within the task. Additionally, pre-task neural and motor measures were compared to assessments beginning at 0, 30 and 60 min post-task. Alpha power increased during the task and was greater than baseline at 30 and 60 min post-task. Motor skills were impaired at ∼10-17 min post-task but recovered at ∼40-47 min. Using a unique combination of neural and motor measures, our results suggest that attentiveness and, possibly, selectiveness in inhibiting irrelevant information are impaired after an acute mentally-fatiguing task. Notably, recovery time differed for neural and motor measures.


Asunto(s)
Electroencefalografía , Fatiga Mental , Atención , Humanos , Destreza Motora
12.
Autism Res ; 14(6): 1101-1114, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33709531

RESUMEN

The processing of information conveyed by faces is a critical component of social communication. While the neurophysiology of processing upright faces has been studied extensively in autism spectrum disorder (ASD), less is known about the neurophysiological abnormalities associated with processing inverted faces in ASD. We used magnetoencephalography (MEG) to study both long-range and local functional connectivity, with the latter assessed using local cross-frequency coupling, in response to inverted faces stimuli, in 7-18 years old individuals with ASD and age and IQ matched typically developing (TD) individuals. We found abnormally reduced coupling between the phase of the alpha rhythm and the amplitude of the gamma rhythm in the fusiform face area (FFA) in response to inverted faces, as well as reduced long-range functional connectivity between the FFA and the inferior frontal gyrus (IFG) in response to inverted faces in the ASD group. These group differences were absent in response to upright faces. The magnitude of functional connectivity between the FFA and the IFG was significantly correlated with the severity of ASD, and FFA-IFG long-range functional connectivity increased with age in TD group, but not in the ASD group. Our findings suggest that both local and long-range functional connectivity are abnormally reduced in children with ASD when processing inverted faces, and that the pattern of abnormalities associated with the processing of inverted faces differs from the pattern of upright faces in ASD, likely due to the presumed greater reliance on top-down regulations necessary for efficient processing of inverted faces. LAY SUMMARY: We found alterations in the neurophysiological responses to inverted faces in children with ASD, that were not reflected in the evoked responses, and were not observed in the responses to upright faces. These alterations included reduced local functional connectivity in the fusiform face area (FFA), and decreased long-range alpha-band modulated functional connectivity between the FFA and the left IFG. The magnitude of long-range functional connectivity between the FFA and the inferior frontal gyrus was correlated with the severity of ASD.


Asunto(s)
Trastorno del Espectro Autista , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Niño , Ritmo Gamma , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Corteza Prefrontal
13.
Neuroimage Clin ; 29: 102501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310630

RESUMEN

The neurophysiology of face processing has been studied extensively in the context of social impairments associated with autism spectrum disorder (ASD), but the existing studies have concentrated mainly on univariate analyses of responses to upright faces, and, less frequently, inverted faces. The small number of existing studies on neurophysiological responses to inverted face in ASD have used univariate approaches, with divergent results. Here, we used a data-driven, classification-based, multivariate machine learning decoding approach to investigate the temporal and spatial properties of the neurophysiological evoked response for upright and inverted faces, relative to the neurophysiological evoked response for houses, a neutral stimulus. 21 (2 females) ASD and 29 (4 females) TD participants ages 7 to 19 took part in this study. Group level classification accuracies were obtained for each condition, using first the temporal domain of the evoked responses, and then the spatial distribution of the evoked responses on the cortical surface, each separately. We found that classification of responses to inverted neutral faces vs. houses was less accurate in ASD compared to TD, in both the temporal and spatial domains. In contrast, there were no group differences in the classification of evoked responses to upright neutral faces relative to houses. Using the classification in the temporal domain, lower decoding accuracies in ASD were found around 120 ms and 170 ms, corresponding the known components of the evoked responses to faces. Using the classification in the spatial domain, lower decoding accuracies in ASD were found in the right superior marginal gyrus (SMG), intra-parietal sulcus (IPS) and posterior superior temporal sulcus (pSTS), but not in core face processing areas. Importantly, individual classification accuracies from both the temporal and spatial classifiers correlated with ASD severity, confirming the relevance of the results to the ASD phenotype.


Asunto(s)
Trastorno del Espectro Autista , Reconocimiento Facial , Adolescente , Adulto , Niño , Femenino , Humanos , Lóbulo Temporal , Adulto Joven
14.
Sci Rep ; 10(1): 11067, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632150

RESUMEN

Recent longitudinal neuroimaging and neurophysiological studies have shown that tracking relative age-related changes in neural signals, rather than a static snapshot of a neural measure, could offer higher sensitivity for discriminating typically developing (TD) individuals from those with autism spectrum disorder (ASD). It is not clear, however, which aspects of age-related changes (trajectories) would be optimal for identifying atypical brain development in ASD. Using a large cross-sectional data set (Autism Brain Imaging Data Exchange [ABIDE] repository; releases I and II), we aimed to explore age-related changes in cortical thickness (CT) in TD and ASD populations (age range 6-30 years old). Cortical thickness was estimated from T1-weighted MRI images at three scales of spatial coarseness (three parcellations with different numbers of regions of interest). For each parcellation, three polynomial models of age-related changes in CT were tested. Specifically, to characterize alterations in CT trajectories, we compared the linear slope, curvature, and aberrancy of CT trajectories across experimental groups, which was estimated using linear, quadratic, and cubic polynomial models, respectively. Also, we explored associations between age-related changes with ASD symptomatology quantified as the Autism Diagnostic Observation Schedule (ADOS) scores. While no overall group differences in cortical thickness were observed across the entire age range, ASD and TD populations were different in terms of age-related changes, which were located primarily in frontal and tempo-parietal areas. These atypical age-related changes were also associated with ADOS scores in the ASD group and used to predict ASD from TD development. These results indicate that the curvature is the most reliable feature for localizing brain areas developmentally atypical in ASD with a more pronounced effect with symptomatology and is the most sensitive in predicting ASD development.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/patología , Corteza Cerebral/patología , Adolescente , Adulto , Factores de Edad , Mapeo Encefálico , Niño , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
15.
Neuroimage Clin ; 27: 102275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32480286

RESUMEN

Children born very preterm, even in the absence of overt brain injury or major impairment, are at increased risk of cognitive difficulties. This risk is associated with developmental disruptions of the thalamocortical system during critical periods while in the neonatal intensive care unit. The thalamus is an important structure that not only relays sensory information but acts as a hub for integration of cortical activity which regulates cortical power across a range of frequencies. In this study, we investigate the association between atypical power at rest in children born very preterm at school age using magnetoencephalography (MEG), neurocognitive function and structural alterations related to the thalamus using MRI. Our results indicate that children born extremely preterm have higher power at slow frequencies (delta and theta) and lower power at faster frequencies (alpha and beta), compared to controls born full-term. A similar pattern of spectral power was found to be associated with poorer neurocognitive outcomes, as well as with normalized T1 intensity and the volume of the thalamus. Overall, this study provides evidence regarding relations between structural alterations related to very preterm birth, atypical oscillatory power at rest and neurocognitive difficulties at school-age children born very preterm.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición/fisiología , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Nacimiento Prematuro/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos
16.
Cereb Cortex ; 30(9): 5166-5179, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32368779

RESUMEN

Autism spectrum disorder (ASD) is diagnosed more often in males with a ratio of 1:4 females/males. This bias is even stronger in neuroimaging studies. There is a growing evidence suggesting that local connectivity and its developmental trajectory is altered in ASD. Here, we aim to investigate how local connectivity and its age-related trajectories vary with ASD in both males and females. We used resting-state fMRI data from the ABIDE I and II repository: males (n = 102) and females (n = 92) with ASD, and typically developing males (n = 104) and females (n = 92) aged between 6 and 26. Local connectivity was quantified as regional homogeneity. We found increases in local connectivity in participants with ASD in the somatomotor and limbic networks and decreased local connectivity within the default mode network. These alterations were more pronounced in females with ASD. In addition, the association between local connectivity and ASD symptoms was more robust in females. Females with ASD had the most distinct developmental trajectories of local connectivity compared with other groups. Overall, our findings of more pronounced local connectivity alterations in females with ASD could indicate a greater etiological load for an ASD diagnosis in this group congruent with the female protective effect hypothesis.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Vías Nerviosas/fisiopatología , Caracteres Sexuales , Adolescente , Mapeo Encefálico/métodos , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
17.
Autism Res ; 13(2): 221-229, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31566907

RESUMEN

Autism spectrum disorder (ASD) is an increasingly common neurodevelopmental disorder that affects 1 in 59 children. The cognitive profiles of individuals with ASD are varied, and the neurophysiological underpinnings of these developmental difficulties are unclear. While many studies have focused on overall group differences in the amplitude or latency of event related potential (ERP) responses, recent research suggests that increased intra-subject neural variability may also be a reliable indicator of atypical brain function in ASD. This study aimed to identify behavioral and neural variability responses during an emotional inhibitory control task in children with ASD compared to typically developing (TD) children. Children with ASD showed increased variability in response to both inhibitory and emotional stimuli, evidenced by greater reaction time variability and single-trial ERP variability of N200 and N170 amplitudes and/or latencies compared to TD children. These results suggest that the physiological basis of ASD may be more accurately explained by increased intra-subject variability, in addition to characteristic increases or decreases in the amplitude or latency of neural responses. Autism Res 2020, 13:221-229. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The cognitive functions including memory, attention, executive functions, and perception, of individuals with ASD are varied, and the physiological underpinnings of these profiles are unclear. In this study, children with ASD showed increased intra-subject neural and behavioral variability in response to an emotional inhibitory control task compared to typically developing children. These results suggest that the physiological basis of ASD may also be explained by increased behavioral and neural variability in people with ASD, rather than simply characteristic increases or decreases in averaged brain responses.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Potenciales Evocados/fisiología , Tiempo de Reacción/fisiología , Niño , Femenino , Humanos , Masculino
18.
Neuroimage ; 216: 116414, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794854

RESUMEN

Naturalistic stimuli such as watching a movie while in the scanner provide an ecologically valid paradigm that has the potential of extracting valuable information on how the brain processes complex stimuli in realistic visual and auditory contexts. Naturalistic viewing is also easier to conduct with challenging participant groups including patients and children. Given the high temporal resolution of MEG, in the present study, we demonstrate how a short movie clip can be used to map distinguishable activation and connectivity dynamics underlying the processing of specific classes of visual stimuli such as face and hand manipulations, as well as contrasting activation dynamics for auditory words and non-words. MEG data were collected from 22 healthy volunteers (6 females, 3 left handed, mean age - 27.7 â€‹± â€‹5.28 years) during the presentation of naturalistic audiovisual stimuli. The MEG data were split into trials with the onset of the stimuli belonging to classes of interest (words, non-words, faces, hand manipulations). Based on the components of the averaged sensor ERFs time-locked to the visual and auditory stimulus onset, four and three time-windows, respectively, were defined to explore brain activation dynamics. Pseudo-Z, defined as the ratio of the source-projected time-locked power to the projected noise power for each vertex, was computed and used as a proxy of time-locked brain activation. Statistical testing using the mean-centered Partial Least Squares analysis indicated periods where a given visual or auditory stimuli had higher activation. Based on peak pseudo-Z differences between the visual conditions, time-frequency resolved analyses were performed to assess beta band desynchronization in motor-related areas, and inter-trial phase synchronization between face processing areas. Our results provide the first evidence that activation and connectivity dynamics in canonical brain regions associated with the processing of particular classes of visual and auditory stimuli can be reliably mapped using MEG during presentation of naturalistic stimuli. Given the strength of MEG for brain mapping in temporal and frequency domains, the use of naturalistic stimuli may open new techniques in analyzing brain dynamics during ecologically valid sensation and perception.


Asunto(s)
Encéfalo/fisiología , Magnetoencefalografía/métodos , Películas Cinematográficas , Red Nerviosa/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adulto , Percepción Auditiva/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Adulto Joven
19.
Hum Brain Mapp ; 41(2): 388-400, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31587465

RESUMEN

Evidence indicates better cognitive and behavioral outcomes for females born very preterm (≤32 weeks gestation) compared to males, but the neurophysiology underlying this apparent resiliency of the female brain remains poorly understood. Here we test the hypothesis that very preterm males express more pronounced connectivity alterations as a reflection of higher male vulnerability. Resting state MEG recordings, neonatal and psychometric data were collected from 100 children at age 8 years: very preterm boys (n = 27), very preterm girls (n = 34), full-term boys (n = 15) and full-term girls (n = 24). Neuromagnetic source dynamics were reconstructed from 76 cortical brain regions. Functional connectivity was estimated using inter-regional phase-synchronization. We performed a series of multivariate analyses to test for differences across groups as well as to explore relationships between deviations in functional connectivity and psychometric scores and neonatal factors for very preterm children. Very preterm boys displayed significantly higher (p < .001) absolute deviation from average connectivity of same-sex full-term group, compared to very preterm girls versus full-term girls. In the connectivity comparison between very preterm and full-term groups separately for boys and girls, significant group differences (p < .05) were observed for boys, but not girls. Sex differences in connectivity (p < .01) were observed in very preterm children but not in full-term groups. Our findings indicate that very preterm boys have greater alterations in resting neurophysiological network communication than girls. Such uneven brain communication disruption in very preterm boys and girls suggests that stronger connectivity alterations might contribute to male vulnerability in long-term behavioral and cognitive outcome.


Asunto(s)
Corteza Cerebral/fisiología , Desarrollo Infantil/fisiología , Sincronización Cortical/fisiología , Neuroimagen Funcional , Recien Nacido Extremadamente Prematuro/fisiología , Magnetoencefalografía , Caracteres Sexuales , Niño , Femenino , Humanos , Recién Nacido , Masculino
20.
Neuroimage ; 208: 116386, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31786165

RESUMEN

Functional brain connectivity is increasingly being seen as critical for cognition, perception and motor control. Magnetoencephalography and electroencephalography are modalities that offer noninvasive mapping of electrophysiological interactions among brain regions, yet suffer from signal leakage and signal cancellation when estimating brain activity. This leads to biased connectivity values which complicate interpretation. In this study, we test the hypothesis that a Multiple Constrained Minimum Variance beamformer (MCMV) outperforms the more traditional Linearly Constrained Minimum Variance beamformer (LCMV) for estimation of electrophysiological connectivity. To this end, MCMV and LCMV performance is compared in task related analyses with both simulated data and human MEG recordings of visual steady state signals, and in resting state analyses with simulated data and human MEG data of 89 subjects. In task related scenarios connectivity was estimated using coherence and phase locking values, whereas envelope correlations were used for the resting state data. We also introduce a novel Augmented Pairwise MCMV (APW-MCMV) approach for signal leakage suppression in resting state analyses and assess its performance against LCMV and more conventional MCMV approaches. We demonstrate that with MCMV effects of signal mixing and coherent source cancellation are greatly reduced in both task related and resting state conditions, while in contrast to other approaches 0- and short time lag interactions are preserved. In addition, we demonstrate that in resting state analyses, APW-MCMV strongly reduces spurious connections while better controlling for false negatives compared to more conservative measures such as symmetrical orthogonalization.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma/métodos , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Modelos Teóricos , Adulto , Conectoma/normas , Electroencefalografía/normas , Humanos , Magnetoencefalografía/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...