Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(18): 5571-5598, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338694

RESUMEN

Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis. This study shows that guaB1, annotated in databases as a putative IMPDH, encodes a guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine-salvage pathway and contains a cystathionine-ß-synthase domain (CBS), which is essential for enzyme activity. GMPR activity is allosterically regulated by the ATP/GTP ratio in a pH-dependent manner. Bioinformatic analysis has indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.


Asunto(s)
Cistationina , Mycobacterium tuberculosis , Adenosina Trifosfato , Cistationina betasintasa/genética , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Inosina , Inosina Monofosfato/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167910

RESUMEN

The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Hepatitis B/virología , Transactivadores/metabolismo , Zinc/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteínas Recombinantes de Fusión , Transactivadores/química , Proteínas Reguladoras y Accesorias Virales
3.
Proc Natl Acad Sci U S A ; 115(50): E11751-E11760, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478053

RESUMEN

Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein-protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.


Asunto(s)
Cápside/química , Cápside/ultraestructura , Virus de la Leucemia Murina/química , Virus de la Leucemia Murina/ultraestructura , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Tomografía con Microscopio Electrónico , Productos del Gen gag/química , Productos del Gen gag/genética , Productos del Gen gag/ultraestructura , Células HEK293 , VIH-1/química , VIH-1/genética , VIH-1/ultraestructura , Humanos , Virus de la Leucemia Murina/genética , Ratones , Modelos Moleculares , Dominios Proteicos , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Virión/química , Virión/genética , Virión/ultraestructura
4.
J Mol Biol ; 428(23): 4708-4722, 2016 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-27725181

RESUMEN

Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the 1H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.


Asunto(s)
Membrana Celular/metabolismo , Virus del Mono Mason-Pfizer/fisiología , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus , Ácidos Grasos/metabolismo , Liposomas/metabolismo , Espectroscopía de Resonancia Magnética , Mutación Missense , Fosfolípidos/metabolismo , Unión Proteica
5.
J Biol Chem ; 291(39): 20630-42, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27514744

RESUMEN

The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.


Asunto(s)
Proteínas de la Cápside/química , Virus de la Leucemia Murina/química , Animales , Proteínas de la Cápside/genética , Virus de la Leucemia Murina/genética , Ratones , Mutagénesis , Dominios Proteicos , Estructura Secundaria de Proteína
6.
Retrovirology ; 13: 2, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728401

RESUMEN

BACKGROUND: Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. RESULTS: Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. CONCLUSIONS: Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization.


Asunto(s)
Virus del Tumor Mamario del Ratón/química , Virus del Tumor Mamario del Ratón/fisiología , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Ratas
7.
Biomol NMR Assign ; 9(2): 229-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25773138

RESUMEN

The matrix protein (MA) of the Mason-Pfizer monkey virus (M-PMV) plays a key role in the transport and budding of immature retroviral particles from the host cell. Natural N-terminal myristoylation of MA is essential for the targeting of the particles to the plasma membrane and participates in the interaction of MA with membranes phospholipids. The mutation Y28F/Y67F in MA reduces budding and thus causes the accumulation of viral particles under the cytoplasmic membrane. To investigate the impact of Y28F/Y67F mutation on the structure of MA, we prepared this protein in amount and quality suitable for NMR spectroscopy. We report backbone, side-chain and myristoyl residue assignments of the Y28F/Y67F mutant of the M-PMV matrix protein, which will be used to study the interaction with membrane phospholipids and to determine the structure of the mutant matrix protein.


Asunto(s)
Virus del Mono Mason-Pfizer/metabolismo , Proteínas Mutantes/química , Ácido Mirístico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas de la Matriz Viral/química , Estructura Secundaria de Proteína , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Retrovirology ; 11: 94, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25365920

RESUMEN

BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a ß-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the ß-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the ß-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal ß-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the ß-hairpin in mature M-PMV CA.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus del Mono Mason-Pfizer/metabolismo , Estructura Secundaria de Proteína/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Células HEK293 , Humanos , Virus del Mono Mason-Pfizer/genética , Datos de Secuencia Molecular , Mutación/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética
9.
Retrovirology ; 11: 37, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24886575

RESUMEN

BACKGROUND: Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. RESULTS: Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. CONCLUSION: In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3.


Asunto(s)
Apoptosis/genética , Infecciones por VIH/metabolismo , Proteasa del VIH/metabolismo , VIH-1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Línea Celular Tumoral , Fragmentación del ADN , Células HEK293 , Infecciones por VIH/genética , Proteasa del VIH/genética , VIH-1/genética , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
10.
J Gen Virol ; 95(Pt 6): 1383-1389, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659101

RESUMEN

We identified breast cancer-associated protein (BCA3) as a novel binding partner of Mason-Pfizer monkey virus (MPMV) protease (PR). The interaction was confirmed by co-immunoprecipitation and immunocolocalization of MPMV PR and BCA3. Full-length but not C-terminally truncated BCA3 was incorporated into MPMV virions. We ruled out the potential role of the G-patch domain, a glycine-rich domain located at the C terminus of MPMV PR, in BCA3 interaction and virion incorporation. Expression of BCA3 did not affect MPMV particle release and proteolytic processing; however, it slightly increased MPMV infectivity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endopeptidasas/metabolismo , Virus del Mono Mason-Pfizer/enzimología , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Endopeptidasas/química , Endopeptidasas/genética , Femenino , Células HEK293 , Humanos , Virus del Mono Mason-Pfizer/genética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
11.
Protein Expr Purif ; 99: 6-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24662511

RESUMEN

Nuclear magnetic resonance (NMR) is a powerful technique for solving protein structures or studying their interactions. However, it requires molecules labeled with NMR sensitive isotopes like carbon (13)C and nitrogen (15)N. The recombinant expression of labeled proteins is simple to perform but requires quite expensive chemicals. When there is a need for special labeled chemicals, like uniformly (13)C-labeled myristic acid, the price significantly rises. Here we describe a cost-effective method for the recombinant expression of uniformly labeled myristoylated proteins in Escherichia coli demonstrated on the production of Mason-Pfizer monkey virus matrix protein. We used the ability of E. coli to naturally synthetize myristic acid. When grown in isotopically labeled medium the myristic acid will be labelled as well. Bacteria were co-transfected with plasmid carrying gene for yeast N-myristoyltransferase which ensures myristoylation of expressed protein. This process provided 1.8mg of the myristoylated, doubly labeled ((13)C/(15)N)M-PMV matrix protein from 1L of (15)N/(13)C labeled M9 medium. The price represents approximately 50% cost reduction of conventional method using commercially available [U-(13)C]myristic acid.


Asunto(s)
Escherichia coli/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Isótopos de Carbono , Escherichia coli/genética , Marcaje Isotópico/economía , Marcaje Isotópico/métodos , Virus del Mono Mason-Pfizer/genética , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Transfección , Proteínas de la Matriz Viral/biosíntesis , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/aislamiento & purificación
12.
Protein Expr Purif ; 92(1): 94-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056256

RESUMEN

N-terminal myristoylation of retroviral matrix proteins is essential for the targeting of the Gag polyproteins to the plasma membrane. To investigate the effect of the myristoylation on the structure and membrane binding ability of the matrix proteins, it is necessary to prepare their myristoylated forms. We present purification of myristoylated matrix proteins of the mouse mammary tumor virus and murine leukemia virus, two morphogenetically distinct retroviruses. The proteins were expressed in Escherichia coli coexpressing a yeast N-myristoyltransferase. This E. coli expression system yielded a mixture of myristoylated and nonmyristoylated matrix proteins. We established efficient one-step metal affinity purification that enabled to obtain pure myristoylated matrix proteins suitable for structural and functional studies.


Asunto(s)
Virus de la Leucemia Murina/metabolismo , Ácido Mirístico/metabolismo , Proteínas de los Retroviridae/aislamiento & purificación , Proteínas de los Retroviridae/metabolismo , Animales , Cromatografía de Afinidad , Clonación Molecular , Virus de la Leucemia Murina/química , Virus de la Leucemia Murina/genética , Ratones , Ácido Mirístico/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Infecciones por Retroviridae/virología , Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/genética
13.
J Virol ; 86(4): 1988-98, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22171253

RESUMEN

Mason-Pfizer monkey virus (M-PMV), like some other betaretroviruses, encodes a G-patch domain (GPD). This glycine-rich domain, which has been predicted to be an RNA binding module, is invariably localized at the 3' end of the pro gene upstream of the pro-pol ribosomal frameshift sequence of genomic RNAs of betaretroviruses. Following two ribosomal frameshift events and the translation of viral mRNA, the GPD is present in both Gag-Pro and Gag-Pro-Pol polyproteins. During the maturation of the Gag-Pro polyprotein, the GPD transiently remains a C-terminal part of the protease (PR), from which it is then detached by PR itself. The destiny of the Gag-Pro-Pol-encoded GPD remains to be determined. The function of the GPD in the retroviral life cycle is unknown. To elucidate the role of the GPD in the M-PMV replication cycle, alanine-scanning mutational analysis of its most highly conserved residues was performed. A series of individual mutations as well as the deletion of the entire GPD had no effect on M-PMV assembly, polyprotein processing, and RNA incorporation. However, a reduction of the reverse transcriptase (RT) activity, resulting in a drop in M-PMV infectivity, was determined for all GPD mutants. Immunoprecipitation experiments suggested that the GPD is a part of RT and participates in its function. These data indicate that the M-PMV GPD functions as a part of reverse transcriptase rather than protease.


Asunto(s)
Virus del Mono Mason-Pfizer/enzimología , Poliproteínas/química , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Virales/química , Animales , Línea Celular , Humanos , Virus del Mono Mason-Pfizer/química , Virus del Mono Mason-Pfizer/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Estructura Terciaria de Proteína , ADN Polimerasa Dirigida por ARN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
J Virol ; 86(3): 1297-306, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22090120

RESUMEN

Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a ß-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of ß-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.


Asunto(s)
Virus de la Leucemia Murina/fisiología , Virión/fisiología , Ensamble de Virus , Secuencia de Aminoácidos , Secuencia de Bases , Microscopía por Crioelectrón , Cartilla de ADN , Escherichia coli/ultraestructura , Escherichia coli/virología , Análisis de Fourier , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteolisis , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA